The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries

A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium–oxygen (Li–O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2014-09, Vol.7 (9), p.2436-2440
Hauptverfasser: Cao, Ruiguo, Walter, Eric D., Xu, Wu, Nasybulin, Eduard N., Bhattacharya, Priyanka, Bowden, Mark E., Engelhard, Mark H., Zhang, Ji-Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2440
container_issue 9
container_start_page 2436
container_title ChemSusChem
container_volume 7
creator Cao, Ruiguo
Walter, Eric D.
Xu, Wu
Nasybulin, Eduard N.
Bhattacharya, Priyanka
Bowden, Mark E.
Engelhard, Mark H.
Zhang, Ji-Guang
description A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium–oxygen (Li–O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li–O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5‐dimethyl‐pyrroline N‐oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2.−) as an intermediate in the ORR during the discharge process, while no O2.− was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. Chasing radicals: The fundamental understanding of the mechanisms for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in nonaqueous Li‐O2 batteries is essential for the further development of these batteries. Here, we systematically investigated the ORR/OER reaction mechanisms in nonaqueous Li‐O2 batteries using electron paramagnetic resonance spectroscopy.
doi_str_mv 10.1002/cssc.201402315
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1561032709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561032709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6815-cc42d03e9e7a358874ec20c6c40a7fc03a5fc0bea4eace1cba0a803170ffad743</originalsourceid><addsrcrecordid>eNqFkc1v0zAYxiPExMbgyhFZcOGS7nWc2MmRVWNM6jqpHR83y3XeUI_E3mJnW_973KWrEBcu_tLveV4_epLkHYUJBchOtPd6kgHNIWO0eJEc0ZLnacHzny_3Z0YPk9fe3wBwqDh_lRxmBeQFgDhK1PUaySXqtbLGd564hlw9bn6hJQusBx2Ms0TZmpzdu3Z4ui1QPT17YiyZO6vuBnSDJzMT1mbo0p38VIWAvUH_JjloVOvx7W4_Tr59Obuefk1nV-cX08-zVPOSFqnWeVYDwwqFYkVZihx1BprrHJRoNDBVxHWFKo_zkeqVAlUCowKaRtUiZ8fJh9HX-WCk1ybEVNpZizpISjkroYzQpxG67V38tw-yM15j2yq7DSFpwSmwTEAV0Y__oDdu6G2MsKUAKBWCR2oyUrp33vfYyNvedKrfSApy25DcNiT3DUXB-53tsOqw3uPPlUSgGoEH0-LmP3ZyulxO_zZPR63xAR_3WtX_llwwUcgf83O5WM6ry--cyVP2B583rJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560011776</pqid></control><display><type>article</type><title>The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cao, Ruiguo ; Walter, Eric D. ; Xu, Wu ; Nasybulin, Eduard N. ; Bhattacharya, Priyanka ; Bowden, Mark E. ; Engelhard, Mark H. ; Zhang, Ji-Guang</creator><creatorcontrib>Cao, Ruiguo ; Walter, Eric D. ; Xu, Wu ; Nasybulin, Eduard N. ; Bhattacharya, Priyanka ; Bowden, Mark E. ; Engelhard, Mark H. ; Zhang, Ji-Guang ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium–oxygen (Li–O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li–O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5‐dimethyl‐pyrroline N‐oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2.−) as an intermediate in the ORR during the discharge process, while no O2.− was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. Chasing radicals: The fundamental understanding of the mechanisms for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in nonaqueous Li‐O2 batteries is essential for the further development of these batteries. Here, we systematically investigated the ORR/OER reaction mechanisms in nonaqueous Li‐O2 batteries using electron paramagnetic resonance spectroscopy.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201402315</identifier><identifier>PMID: 25045007</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>batteries ; Cyclic N-Oxides - chemistry ; Electric Power Supplies ; electrochemistry ; ELECTRON SPIN RESONANCE ; ENERGY STORAGE ; Environmental Molecular Sciences Laboratory ; EPR ; Li-O2 battery ; lithium ; Lithium - chemistry ; OER ; ORR ; Oxidation-Reduction ; Oxygen ; Oxygen - chemistry ; OXYGEN ENHANCEMENT RATIO ; radicals ; Superoxides - chemistry</subject><ispartof>ChemSusChem, 2014-09, Vol.7 (9), p.2436-2440</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6815-cc42d03e9e7a358874ec20c6c40a7fc03a5fc0bea4eace1cba0a803170ffad743</citedby><cites>FETCH-LOGICAL-c6815-cc42d03e9e7a358874ec20c6c40a7fc03a5fc0bea4eace1cba0a803170ffad743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201402315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201402315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25045007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1163808$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Ruiguo</creatorcontrib><creatorcontrib>Walter, Eric D.</creatorcontrib><creatorcontrib>Xu, Wu</creatorcontrib><creatorcontrib>Nasybulin, Eduard N.</creatorcontrib><creatorcontrib>Bhattacharya, Priyanka</creatorcontrib><creatorcontrib>Bowden, Mark E.</creatorcontrib><creatorcontrib>Engelhard, Mark H.</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium–oxygen (Li–O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li–O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5‐dimethyl‐pyrroline N‐oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2.−) as an intermediate in the ORR during the discharge process, while no O2.− was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. Chasing radicals: The fundamental understanding of the mechanisms for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in nonaqueous Li‐O2 batteries is essential for the further development of these batteries. Here, we systematically investigated the ORR/OER reaction mechanisms in nonaqueous Li‐O2 batteries using electron paramagnetic resonance spectroscopy.</description><subject>batteries</subject><subject>Cyclic N-Oxides - chemistry</subject><subject>Electric Power Supplies</subject><subject>electrochemistry</subject><subject>ELECTRON SPIN RESONANCE</subject><subject>ENERGY STORAGE</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>EPR</subject><subject>Li-O2 battery</subject><subject>lithium</subject><subject>Lithium - chemistry</subject><subject>OER</subject><subject>ORR</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>OXYGEN ENHANCEMENT RATIO</subject><subject>radicals</subject><subject>Superoxides - chemistry</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v0zAYxiPExMbgyhFZcOGS7nWc2MmRVWNM6jqpHR83y3XeUI_E3mJnW_973KWrEBcu_tLveV4_epLkHYUJBchOtPd6kgHNIWO0eJEc0ZLnacHzny_3Z0YPk9fe3wBwqDh_lRxmBeQFgDhK1PUaySXqtbLGd564hlw9bn6hJQusBx2Ms0TZmpzdu3Z4ui1QPT17YiyZO6vuBnSDJzMT1mbo0p38VIWAvUH_JjloVOvx7W4_Tr59Obuefk1nV-cX08-zVPOSFqnWeVYDwwqFYkVZihx1BprrHJRoNDBVxHWFKo_zkeqVAlUCowKaRtUiZ8fJh9HX-WCk1ybEVNpZizpISjkroYzQpxG67V38tw-yM15j2yq7DSFpwSmwTEAV0Y__oDdu6G2MsKUAKBWCR2oyUrp33vfYyNvedKrfSApy25DcNiT3DUXB-53tsOqw3uPPlUSgGoEH0-LmP3ZyulxO_zZPR63xAR_3WtX_llwwUcgf83O5WM6ry--cyVP2B583rJ0</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Cao, Ruiguo</creator><creator>Walter, Eric D.</creator><creator>Xu, Wu</creator><creator>Nasybulin, Eduard N.</creator><creator>Bhattacharya, Priyanka</creator><creator>Bowden, Mark E.</creator><creator>Engelhard, Mark H.</creator><creator>Zhang, Ji-Guang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201409</creationdate><title>The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries</title><author>Cao, Ruiguo ; Walter, Eric D. ; Xu, Wu ; Nasybulin, Eduard N. ; Bhattacharya, Priyanka ; Bowden, Mark E. ; Engelhard, Mark H. ; Zhang, Ji-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6815-cc42d03e9e7a358874ec20c6c40a7fc03a5fc0bea4eace1cba0a803170ffad743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>batteries</topic><topic>Cyclic N-Oxides - chemistry</topic><topic>Electric Power Supplies</topic><topic>electrochemistry</topic><topic>ELECTRON SPIN RESONANCE</topic><topic>ENERGY STORAGE</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>EPR</topic><topic>Li-O2 battery</topic><topic>lithium</topic><topic>Lithium - chemistry</topic><topic>OER</topic><topic>ORR</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>OXYGEN ENHANCEMENT RATIO</topic><topic>radicals</topic><topic>Superoxides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ruiguo</creatorcontrib><creatorcontrib>Walter, Eric D.</creatorcontrib><creatorcontrib>Xu, Wu</creatorcontrib><creatorcontrib>Nasybulin, Eduard N.</creatorcontrib><creatorcontrib>Bhattacharya, Priyanka</creatorcontrib><creatorcontrib>Bowden, Mark E.</creatorcontrib><creatorcontrib>Engelhard, Mark H.</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Ruiguo</au><au>Walter, Eric D.</au><au>Xu, Wu</au><au>Nasybulin, Eduard N.</au><au>Bhattacharya, Priyanka</au><au>Bowden, Mark E.</au><au>Engelhard, Mark H.</au><au>Zhang, Ji-Guang</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2014-09</date><risdate>2014</risdate><volume>7</volume><issue>9</issue><spage>2436</spage><epage>2440</epage><pages>2436-2440</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium–oxygen (Li–O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li–O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5‐dimethyl‐pyrroline N‐oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2.−) as an intermediate in the ORR during the discharge process, while no O2.− was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. Chasing radicals: The fundamental understanding of the mechanisms for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in nonaqueous Li‐O2 batteries is essential for the further development of these batteries. Here, we systematically investigated the ORR/OER reaction mechanisms in nonaqueous Li‐O2 batteries using electron paramagnetic resonance spectroscopy.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25045007</pmid><doi>10.1002/cssc.201402315</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2014-09, Vol.7 (9), p.2436-2440
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1561032709
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects batteries
Cyclic N-Oxides - chemistry
Electric Power Supplies
electrochemistry
ELECTRON SPIN RESONANCE
ENERGY STORAGE
Environmental Molecular Sciences Laboratory
EPR
Li-O2 battery
lithium
Lithium - chemistry
OER
ORR
Oxidation-Reduction
Oxygen
Oxygen - chemistry
OXYGEN ENHANCEMENT RATIO
radicals
Superoxides - chemistry
title The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mechanisms%20of%20Oxygen%20Reduction%20and%20Evolution%20Reactions%20in%20Nonaqueous%20Lithium-Oxygen%20Batteries&rft.jtitle=ChemSusChem&rft.au=Cao,%20Ruiguo&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2014-09&rft.volume=7&rft.issue=9&rft.spage=2436&rft.epage=2440&rft.pages=2436-2440&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201402315&rft_dat=%3Cproquest_osti_%3E1561032709%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560011776&rft_id=info:pmid/25045007&rfr_iscdi=true