The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding
Radio-echo soundings provide an effective tool for mapping the thermal regimes of polythermal glaciers on a regional scale. Radar signals of 320–370 MHz penetrate ice at sub-freezing temperatures but are reflected from the top of layers of ice which are at the melting point and contain water. Radar...
Gespeichert in:
Veröffentlicht in: | Journal of glaciology 1996, Vol.42 (140), p.23-32 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio-echo soundings provide an effective tool for mapping the thermal regimes of polythermal glaciers on a regional scale. Radar signals of 320–370 MHz penetrate ice at sub-freezing temperatures but are reflected from the top of layers of ice which are at the melting point and contain water. Radar signals of 5–20 MHz, on the other hand, see through both the cold and the temperate ice down to the glacier bed. Radio-echo soundings at these frequencies have been used to investigate the thermal regimes of four polythermal glaciers in Svalbard: Kongsvegen, Uvérsbreen, Midre Lovénbreen and Austre Brøggerbreen. In the ablation area of Kongsvegen, a cold surface layer (50–160 m thick) was underlain by a warm basal layer which is advected from the temperate accumulation area. The surface ablation of this cold layer may be compensated by freezing at its lower cold-temperate interface. This requires that the free water content in the ice at the freezing interface is about 1 % of the volume. The cold surface layer is thicker beneath medial moraines and where cold-based hanging glaciers enter the main ice stream. On Uvérsbreen the thermal regime was similar to that of Kongsvegen. A temperate hole was found in the otherwise cold surface layer of the ablation area in a surface depression between Kongsvegen and Uvérsbreen where meltwater accumulates during the summer (near the subglacial lake Setevatnet, 250 m a.s.l.). Lovénbreen w as frozen to the bed at the snout and along all the mountain slopes but beneath the central part of the glacier a warm basal layer (up to 50 m thick) was fed by temperate ice from two cirques. On Austre Brøggerbreen, a temperate basal layer was not detected by radio-echo soundings but the basal ice was observed to be at the melting point in two boreholes. |
---|---|
ISSN: | 0022-1430 1727-5652 |
DOI: | 10.3189/S0022143000030495 |