Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite

The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-09, Vol.5 (1), p.4811-4811, Article 4811
Hauptverfasser: Panda, Manas K., Runčevski, Tomče, Chandra Sahoo, Subash, Belik, Alexei A., Nath, Naba K., Dinnebier, Robert E., Naumov, Panče
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4811
container_issue 1
container_start_page 4811
container_title Nature communications
container_volume 5
creator Panda, Manas K.
Runčevski, Tomče
Chandra Sahoo, Subash
Belik, Alexei A.
Nath, Naba K.
Dinnebier, Robert E.
Naumov, Panče
description The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α—ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10 –6  K –1 ) with volumetric expansion coefficients (≈250 × 10 –6  K –1 ) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10 4 times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. The thermosalient effect is the unusual tendency of some crystals to visibly jump during phase changes. Here, the authors study the multiple phase changes in a prototypic thermosalient material and provide evidence for the factors that drive this self-actuation.
doi_str_mv 10.1038/ncomms5811
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560580845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3421828041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-73ba36dc71f5f6250c548eefd81a4b31ebe8fbb8282f3a5d6cb41b06f69ed68a3</originalsourceid><addsrcrecordid>eNplkV1PwyAUhonRuGXuxh9gmnhjNFUo0NFLs_iVLPFGrxtKD1uXFipQo_9e3OZHlBs45314D5yD0DHBlwRTcWWU7TrPBSF7aJxhRlIyy-j-r_MITb1f47hoQQRjh2iUcSJ4wYoxGua2td7LNumtb0LzCok0dWJgKTdBWIHrogpvvTS-sWYjb7I23mrAhAS0BhWSJmpJHxOys65fNSqxbimN7SDIto1hJ12AaBLgCB1o2XqY7vYJer69eZrfp4vHu4f59SJVjNOQzmglaV6rGdFc5xnHijMBoGtBJKsogQqEriqRiUxTyetcVYxUONd5AXUuJJ2gs61v7-zLAD6UXeMVtK00YAdfEp5jLrCI1Sbo9A-6toMz8XWR4oUQglEaqfMtpVzsmgNd9q6J_3ovCS4_51H-zCPCJzvLoeqg_ka_uh-Biy3go2SW4H7V_G_3AQUqmHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559888433</pqid></control><display><type>article</type><title>Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite</title><source>Springer Nature OA Free Journals</source><creator>Panda, Manas K. ; Runčevski, Tomče ; Chandra Sahoo, Subash ; Belik, Alexei A. ; Nath, Naba K. ; Dinnebier, Robert E. ; Naumov, Panče</creator><creatorcontrib>Panda, Manas K. ; Runčevski, Tomče ; Chandra Sahoo, Subash ; Belik, Alexei A. ; Nath, Naba K. ; Dinnebier, Robert E. ; Naumov, Panče</creatorcontrib><description>The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α—ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10 –6  K –1 ) with volumetric expansion coefficients (≈250 × 10 –6  K –1 ) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10 4 times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. The thermosalient effect is the unusual tendency of some crystals to visibly jump during phase changes. Here, the authors study the multiple phase changes in a prototypic thermosalient material and provide evidence for the factors that drive this self-actuation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5811</identifier><identifier>PMID: 25185949</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/638/263/406 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4811-4811, Article 4811</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-73ba36dc71f5f6250c548eefd81a4b31ebe8fbb8282f3a5d6cb41b06f69ed68a3</citedby><cites>FETCH-LOGICAL-c453t-73ba36dc71f5f6250c548eefd81a4b31ebe8fbb8282f3a5d6cb41b06f69ed68a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5811$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5811$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5811$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25185949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panda, Manas K.</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Chandra Sahoo, Subash</creatorcontrib><creatorcontrib>Belik, Alexei A.</creatorcontrib><creatorcontrib>Nath, Naba K.</creatorcontrib><creatorcontrib>Dinnebier, Robert E.</creatorcontrib><creatorcontrib>Naumov, Panče</creatorcontrib><title>Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α—ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10 –6  K –1 ) with volumetric expansion coefficients (≈250 × 10 –6  K –1 ) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10 4 times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. The thermosalient effect is the unusual tendency of some crystals to visibly jump during phase changes. Here, the authors study the multiple phase changes in a prototypic thermosalient material and provide evidence for the factors that drive this self-actuation.</description><subject>639/301</subject><subject>639/638/263/406</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1PwyAUhonRuGXuxh9gmnhjNFUo0NFLs_iVLPFGrxtKD1uXFipQo_9e3OZHlBs45314D5yD0DHBlwRTcWWU7TrPBSF7aJxhRlIyy-j-r_MITb1f47hoQQRjh2iUcSJ4wYoxGua2td7LNumtb0LzCok0dWJgKTdBWIHrogpvvTS-sWYjb7I23mrAhAS0BhWSJmpJHxOys65fNSqxbimN7SDIto1hJ12AaBLgCB1o2XqY7vYJer69eZrfp4vHu4f59SJVjNOQzmglaV6rGdFc5xnHijMBoGtBJKsogQqEriqRiUxTyetcVYxUONd5AXUuJJ2gs61v7-zLAD6UXeMVtK00YAdfEp5jLrCI1Sbo9A-6toMz8XWR4oUQglEaqfMtpVzsmgNd9q6J_3ovCS4_51H-zCPCJzvLoeqg_ka_uh-Biy3go2SW4H7V_G_3AQUqmHw</recordid><startdate>20140904</startdate><enddate>20140904</enddate><creator>Panda, Manas K.</creator><creator>Runčevski, Tomče</creator><creator>Chandra Sahoo, Subash</creator><creator>Belik, Alexei A.</creator><creator>Nath, Naba K.</creator><creator>Dinnebier, Robert E.</creator><creator>Naumov, Panče</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140904</creationdate><title>Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite</title><author>Panda, Manas K. ; Runčevski, Tomče ; Chandra Sahoo, Subash ; Belik, Alexei A. ; Nath, Naba K. ; Dinnebier, Robert E. ; Naumov, Panče</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-73ba36dc71f5f6250c548eefd81a4b31ebe8fbb8282f3a5d6cb41b06f69ed68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301</topic><topic>639/638/263/406</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, Manas K.</creatorcontrib><creatorcontrib>Runčevski, Tomče</creatorcontrib><creatorcontrib>Chandra Sahoo, Subash</creatorcontrib><creatorcontrib>Belik, Alexei A.</creatorcontrib><creatorcontrib>Nath, Naba K.</creatorcontrib><creatorcontrib>Dinnebier, Robert E.</creatorcontrib><creatorcontrib>Naumov, Panče</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panda, Manas K.</au><au>Runčevski, Tomče</au><au>Chandra Sahoo, Subash</au><au>Belik, Alexei A.</au><au>Nath, Naba K.</au><au>Dinnebier, Robert E.</au><au>Naumov, Panče</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-04</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4811</spage><epage>4811</epage><pages>4811-4811</pages><artnum>4811</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α—ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10 –6  K –1 ) with volumetric expansion coefficients (≈250 × 10 –6  K –1 ) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10 4 times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect. The thermosalient effect is the unusual tendency of some crystals to visibly jump during phase changes. Here, the authors study the multiple phase changes in a prototypic thermosalient material and provide evidence for the factors that drive this self-actuation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25185949</pmid><doi>10.1038/ncomms5811</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-09, Vol.5 (1), p.4811-4811, Article 4811
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1560580845
source Springer Nature OA Free Journals
subjects 639/301
639/638/263/406
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20positive%20and%20negative%20thermal%20expansion%20and%20thermosalient%20effect%20in%20a%20pentamorphic%20organometallic%20martensite&rft.jtitle=Nature%20communications&rft.au=Panda,%20Manas%20K.&rft.date=2014-09-04&rft.volume=5&rft.issue=1&rft.spage=4811&rft.epage=4811&rft.pages=4811-4811&rft.artnum=4811&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5811&rft_dat=%3Cproquest_C6C%3E3421828041%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559888433&rft_id=info:pmid/25185949&rfr_iscdi=true