A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime

Single-step nonadiabatic electron tunneling models are widely used to analyze electrochemical rates through self-assembled monolayer films (SAMs). For some systems, such as nucleic acids, long-range charge transfer can occur in a “hopping” regime that involves multiple charge transfer events and int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-09, Vol.118 (35), p.7579-7589
Hauptverfasser: Yin, Xing, Wierzbinski, Emil, Lu, Hao, Bezer, Silvia, de Leon, Arnie R, Davis, Kathryn L, Achim, Catalina, Waldeck, David H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7589
container_issue 35
container_start_page 7579
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 118
creator Yin, Xing
Wierzbinski, Emil
Lu, Hao
Bezer, Silvia
de Leon, Arnie R
Davis, Kathryn L
Achim, Catalina
Waldeck, David H
description Single-step nonadiabatic electron tunneling models are widely used to analyze electrochemical rates through self-assembled monolayer films (SAMs). For some systems, such as nucleic acids, long-range charge transfer can occur in a “hopping” regime that involves multiple charge transfer events and intermediate states. This report describes a three-step kinetic scheme to model charge transfer in this regime. Some of the features of the three-step model are probed experimentally by changing the chemical composition of the SAM. This work uses the three-step model and a temperature dependence of the charge transfer rate to extract the charge injection barrier for a SAM composed of a 10-mer peptide nucleic acid that operates in the hopping regime.
doi_str_mv 10.1021/jp502826e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560579133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560579133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-7de19c05843024d82ebb895e72b482ab8d18e0a5ba1a98fda42099da4adf85083</originalsourceid><addsrcrecordid>eNptkL1OwzAURi0EolAYeAHkBQmGwLUdt_ZYVYUiipCgzJHj3DSu8oedDLw9QS2dmL47HB3pHkKuGNwz4Oxh20rgik_wiJwxySGSnMnj4QalIzkRekTOQ9gCABM8PiUjHismNMgzsp7RdeERo48OW_riauycpa9NhiXNG08XJdrON7bAyllT0nlh_Abp2ps65Oipq2lXIF02bevqDX3Hjavwgpzkpgx4ud8x-XxcrOfLaPX29DyfrSIjmOyiaYZMW5AqFsDjTHFMU6UlTnkaK25SlTGFYGRqmNEqz0zMQethTJYrCUqMye3O2_rmq8fQJZULFsvS1Nj0IWFyAnKqmRADerdDrW9C8JgnrXeV8d8Jg-Q3YnKIOLDXe22fVpgdyL9qA3CzA4wNybbpfT18-Y_oB3_qd1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560579133</pqid></control><display><type>article</type><title>A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yin, Xing ; Wierzbinski, Emil ; Lu, Hao ; Bezer, Silvia ; de Leon, Arnie R ; Davis, Kathryn L ; Achim, Catalina ; Waldeck, David H</creator><creatorcontrib>Yin, Xing ; Wierzbinski, Emil ; Lu, Hao ; Bezer, Silvia ; de Leon, Arnie R ; Davis, Kathryn L ; Achim, Catalina ; Waldeck, David H</creatorcontrib><description>Single-step nonadiabatic electron tunneling models are widely used to analyze electrochemical rates through self-assembled monolayer films (SAMs). For some systems, such as nucleic acids, long-range charge transfer can occur in a “hopping” regime that involves multiple charge transfer events and intermediate states. This report describes a three-step kinetic scheme to model charge transfer in this regime. Some of the features of the three-step model are probed experimentally by changing the chemical composition of the SAM. This work uses the three-step model and a temperature dependence of the charge transfer rate to extract the charge injection barrier for a SAM composed of a 10-mer peptide nucleic acid that operates in the hopping regime.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp502826e</identifier><identifier>PMID: 24813905</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Computer Simulation ; Electrons ; Kinetics ; Models, Chemical ; Models, Genetic ; Peptide Nucleic Acids - chemistry ; Temperature</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2014-09, Vol.118 (35), p.7579-7589</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-7de19c05843024d82ebb895e72b482ab8d18e0a5ba1a98fda42099da4adf85083</citedby><cites>FETCH-LOGICAL-a315t-7de19c05843024d82ebb895e72b482ab8d18e0a5ba1a98fda42099da4adf85083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp502826e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp502826e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24813905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Xing</creatorcontrib><creatorcontrib>Wierzbinski, Emil</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Bezer, Silvia</creatorcontrib><creatorcontrib>de Leon, Arnie R</creatorcontrib><creatorcontrib>Davis, Kathryn L</creatorcontrib><creatorcontrib>Achim, Catalina</creatorcontrib><creatorcontrib>Waldeck, David H</creatorcontrib><title>A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Single-step nonadiabatic electron tunneling models are widely used to analyze electrochemical rates through self-assembled monolayer films (SAMs). For some systems, such as nucleic acids, long-range charge transfer can occur in a “hopping” regime that involves multiple charge transfer events and intermediate states. This report describes a three-step kinetic scheme to model charge transfer in this regime. Some of the features of the three-step model are probed experimentally by changing the chemical composition of the SAM. This work uses the three-step model and a temperature dependence of the charge transfer rate to extract the charge injection barrier for a SAM composed of a 10-mer peptide nucleic acid that operates in the hopping regime.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Electrons</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Genetic</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Temperature</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL1OwzAURi0EolAYeAHkBQmGwLUdt_ZYVYUiipCgzJHj3DSu8oedDLw9QS2dmL47HB3pHkKuGNwz4Oxh20rgik_wiJwxySGSnMnj4QalIzkRekTOQ9gCABM8PiUjHismNMgzsp7RdeERo48OW_riauycpa9NhiXNG08XJdrON7bAyllT0nlh_Abp2ps65Oipq2lXIF02bevqDX3Hjavwgpzkpgx4ud8x-XxcrOfLaPX29DyfrSIjmOyiaYZMW5AqFsDjTHFMU6UlTnkaK25SlTGFYGRqmNEqz0zMQethTJYrCUqMye3O2_rmq8fQJZULFsvS1Nj0IWFyAnKqmRADerdDrW9C8JgnrXeV8d8Jg-Q3YnKIOLDXe22fVpgdyL9qA3CzA4wNybbpfT18-Y_oB3_qd1s</recordid><startdate>20140904</startdate><enddate>20140904</enddate><creator>Yin, Xing</creator><creator>Wierzbinski, Emil</creator><creator>Lu, Hao</creator><creator>Bezer, Silvia</creator><creator>de Leon, Arnie R</creator><creator>Davis, Kathryn L</creator><creator>Achim, Catalina</creator><creator>Waldeck, David H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140904</creationdate><title>A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime</title><author>Yin, Xing ; Wierzbinski, Emil ; Lu, Hao ; Bezer, Silvia ; de Leon, Arnie R ; Davis, Kathryn L ; Achim, Catalina ; Waldeck, David H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-7de19c05843024d82ebb895e72b482ab8d18e0a5ba1a98fda42099da4adf85083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Electrons</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Genetic</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xing</creatorcontrib><creatorcontrib>Wierzbinski, Emil</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Bezer, Silvia</creatorcontrib><creatorcontrib>de Leon, Arnie R</creatorcontrib><creatorcontrib>Davis, Kathryn L</creatorcontrib><creatorcontrib>Achim, Catalina</creatorcontrib><creatorcontrib>Waldeck, David H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xing</au><au>Wierzbinski, Emil</au><au>Lu, Hao</au><au>Bezer, Silvia</au><au>de Leon, Arnie R</au><au>Davis, Kathryn L</au><au>Achim, Catalina</au><au>Waldeck, David H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2014-09-04</date><risdate>2014</risdate><volume>118</volume><issue>35</issue><spage>7579</spage><epage>7589</epage><pages>7579-7589</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Single-step nonadiabatic electron tunneling models are widely used to analyze electrochemical rates through self-assembled monolayer films (SAMs). For some systems, such as nucleic acids, long-range charge transfer can occur in a “hopping” regime that involves multiple charge transfer events and intermediate states. This report describes a three-step kinetic scheme to model charge transfer in this regime. Some of the features of the three-step model are probed experimentally by changing the chemical composition of the SAM. This work uses the three-step model and a temperature dependence of the charge transfer rate to extract the charge injection barrier for a SAM composed of a 10-mer peptide nucleic acid that operates in the hopping regime.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24813905</pmid><doi>10.1021/jp502826e</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-09, Vol.118 (35), p.7579-7589
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1560579133
source MEDLINE; ACS Publications
subjects Algorithms
Computer Simulation
Electrons
Kinetics
Models, Chemical
Models, Genetic
Peptide Nucleic Acids - chemistry
Temperature
title A Three-Step Kinetic Model for Electrochemical Charge Transfer in the Hopping Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-Step%20Kinetic%20Model%20for%20Electrochemical%20Charge%20Transfer%20in%20the%20Hopping%20Regime&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Yin,%20Xing&rft.date=2014-09-04&rft.volume=118&rft.issue=35&rft.spage=7579&rft.epage=7589&rft.pages=7579-7589&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp502826e&rft_dat=%3Cproquest_cross%3E1560579133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560579133&rft_id=info:pmid/24813905&rfr_iscdi=true