Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling
Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we pres...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2014-09, Vol.13 (9), p.4120-4130 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4130 |
---|---|
container_issue | 9 |
container_start_page | 4120 |
container_title | Journal of proteome research |
container_volume | 13 |
creator | Zhu, Jiangjiang Djukovic, Danijel Deng, Lingli Gu, Haiwei Himmati, Farhan Chiorean, E. Gabriela Raftery, Daniel |
description | Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach. |
doi_str_mv | 10.1021/pr500494u |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560578123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560578123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgWgpDLwA8oIEQ8CXOHFGlHKTikCinSPn5KRKlcTFTgbeHqOWTkw-tj_90vkJueTsjjPB77dOMRZn8XhEplxJFcmMpcd_s87khJx5v2GMq5TJUzIRiotEZ9mUzHPbWocwmJbmpgd0dI5DuDe2pyvf9Gu6NG4dnir6iW7s6BsOprRtA_TD2bppAzknJ7VpPV7szxlZPT0u85do8f78mj8sIiM1HyLgGHOoDGRpGVcmgVqWIDVozBTyONZCa4xVUoY_gxoAU5YKhYgCGHIhZ-Rml7t19mtEPxRd4wHb1vRoR19wlTCV6iADvd1RcNZ7h3WxdU1n3HfBWfFbWnEoLdirfexYdlgd5F9LAVzvgAFfbOzo-rDlP0E_GT9zuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560578123</pqid></control><display><type>article</type><title>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhu, Jiangjiang ; Djukovic, Danijel ; Deng, Lingli ; Gu, Haiwei ; Himmati, Farhan ; Chiorean, E. Gabriela ; Raftery, Daniel</creator><creatorcontrib>Zhu, Jiangjiang ; Djukovic, Danijel ; Deng, Lingli ; Gu, Haiwei ; Himmati, Farhan ; Chiorean, E. Gabriela ; Raftery, Daniel</creatorcontrib><description>Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr500494u</identifier><identifier>PMID: 25126899</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Biomarkers, Tumor - blood ; Biomarkers, Tumor - chemistry ; Case-Control Studies ; Chromatography, Liquid ; Colonic Polyps - blood ; Colonic Polyps - metabolism ; Colorectal Neoplasms - blood ; Colorectal Neoplasms - metabolism ; Female ; Humans ; Male ; Metabolome - physiology ; Metabolomics - methods ; Middle Aged ; Models, Statistical ; ROC Curve ; Tandem Mass Spectrometry ; Young Adult</subject><ispartof>Journal of proteome research, 2014-09, Vol.13 (9), p.4120-4130</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</citedby><cites>FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr500494u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr500494u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25126899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jiangjiang</creatorcontrib><creatorcontrib>Djukovic, Danijel</creatorcontrib><creatorcontrib>Deng, Lingli</creatorcontrib><creatorcontrib>Gu, Haiwei</creatorcontrib><creatorcontrib>Himmati, Farhan</creatorcontrib><creatorcontrib>Chiorean, E. Gabriela</creatorcontrib><creatorcontrib>Raftery, Daniel</creatorcontrib><title>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biomarkers, Tumor - chemistry</subject><subject>Case-Control Studies</subject><subject>Chromatography, Liquid</subject><subject>Colonic Polyps - blood</subject><subject>Colonic Polyps - metabolism</subject><subject>Colorectal Neoplasms - blood</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Metabolome - physiology</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>ROC Curve</subject><subject>Tandem Mass Spectrometry</subject><subject>Young Adult</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LtOwzAUBmALgWgpDLwA8oIEQ8CXOHFGlHKTikCinSPn5KRKlcTFTgbeHqOWTkw-tj_90vkJueTsjjPB77dOMRZn8XhEplxJFcmMpcd_s87khJx5v2GMq5TJUzIRiotEZ9mUzHPbWocwmJbmpgd0dI5DuDe2pyvf9Gu6NG4dnir6iW7s6BsOprRtA_TD2bppAzknJ7VpPV7szxlZPT0u85do8f78mj8sIiM1HyLgGHOoDGRpGVcmgVqWIDVozBTyONZCa4xVUoY_gxoAU5YKhYgCGHIhZ-Rml7t19mtEPxRd4wHb1vRoR19wlTCV6iADvd1RcNZ7h3WxdU1n3HfBWfFbWnEoLdirfexYdlgd5F9LAVzvgAFfbOzo-rDlP0E_GT9zuA</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Zhu, Jiangjiang</creator><creator>Djukovic, Danijel</creator><creator>Deng, Lingli</creator><creator>Gu, Haiwei</creator><creator>Himmati, Farhan</creator><creator>Chiorean, E. Gabriela</creator><creator>Raftery, Daniel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140905</creationdate><title>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</title><author>Zhu, Jiangjiang ; Djukovic, Danijel ; Deng, Lingli ; Gu, Haiwei ; Himmati, Farhan ; Chiorean, E. Gabriela ; Raftery, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biomarkers, Tumor - chemistry</topic><topic>Case-Control Studies</topic><topic>Chromatography, Liquid</topic><topic>Colonic Polyps - blood</topic><topic>Colonic Polyps - metabolism</topic><topic>Colorectal Neoplasms - blood</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Metabolome - physiology</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>ROC Curve</topic><topic>Tandem Mass Spectrometry</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiangjiang</creatorcontrib><creatorcontrib>Djukovic, Danijel</creatorcontrib><creatorcontrib>Deng, Lingli</creatorcontrib><creatorcontrib>Gu, Haiwei</creatorcontrib><creatorcontrib>Himmati, Farhan</creatorcontrib><creatorcontrib>Chiorean, E. Gabriela</creatorcontrib><creatorcontrib>Raftery, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiangjiang</au><au>Djukovic, Danijel</au><au>Deng, Lingli</au><au>Gu, Haiwei</au><au>Himmati, Farhan</au><au>Chiorean, E. Gabriela</au><au>Raftery, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>13</volume><issue>9</issue><spage>4120</spage><epage>4130</epage><pages>4120-4130</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25126899</pmid><doi>10.1021/pr500494u</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2014-09, Vol.13 (9), p.4120-4130 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560578123 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adolescent Adult Aged Aged, 80 and over Biomarkers, Tumor - blood Biomarkers, Tumor - chemistry Case-Control Studies Chromatography, Liquid Colonic Polyps - blood Colonic Polyps - metabolism Colorectal Neoplasms - blood Colorectal Neoplasms - metabolism Female Humans Male Metabolome - physiology Metabolomics - methods Middle Aged Models, Statistical ROC Curve Tandem Mass Spectrometry Young Adult |
title | Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colorectal%20Cancer%20Detection%20Using%20Targeted%20Serum%20Metabolic%20Profiling&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Zhu,%20Jiangjiang&rft.date=2014-09-05&rft.volume=13&rft.issue=9&rft.spage=4120&rft.epage=4130&rft.pages=4120-4130&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr500494u&rft_dat=%3Cproquest_cross%3E1560578123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560578123&rft_id=info:pmid/25126899&rfr_iscdi=true |