Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling

Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2014-09, Vol.13 (9), p.4120-4130
Hauptverfasser: Zhu, Jiangjiang, Djukovic, Danijel, Deng, Lingli, Gu, Haiwei, Himmati, Farhan, Chiorean, E. Gabriela, Raftery, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4130
container_issue 9
container_start_page 4120
container_title Journal of proteome research
container_volume 13
creator Zhu, Jiangjiang
Djukovic, Danijel
Deng, Lingli
Gu, Haiwei
Himmati, Farhan
Chiorean, E. Gabriela
Raftery, Daniel
description Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.
doi_str_mv 10.1021/pr500494u
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560578123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560578123</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgWgpDLwA8oIEQ8CXOHFGlHKTikCinSPn5KRKlcTFTgbeHqOWTkw-tj_90vkJueTsjjPB77dOMRZn8XhEplxJFcmMpcd_s87khJx5v2GMq5TJUzIRiotEZ9mUzHPbWocwmJbmpgd0dI5DuDe2pyvf9Gu6NG4dnir6iW7s6BsOprRtA_TD2bppAzknJ7VpPV7szxlZPT0u85do8f78mj8sIiM1HyLgGHOoDGRpGVcmgVqWIDVozBTyONZCa4xVUoY_gxoAU5YKhYgCGHIhZ-Rml7t19mtEPxRd4wHb1vRoR19wlTCV6iADvd1RcNZ7h3WxdU1n3HfBWfFbWnEoLdirfexYdlgd5F9LAVzvgAFfbOzo-rDlP0E_GT9zuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560578123</pqid></control><display><type>article</type><title>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhu, Jiangjiang ; Djukovic, Danijel ; Deng, Lingli ; Gu, Haiwei ; Himmati, Farhan ; Chiorean, E. Gabriela ; Raftery, Daniel</creator><creatorcontrib>Zhu, Jiangjiang ; Djukovic, Danijel ; Deng, Lingli ; Gu, Haiwei ; Himmati, Farhan ; Chiorean, E. Gabriela ; Raftery, Daniel</creatorcontrib><description>Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr500494u</identifier><identifier>PMID: 25126899</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Biomarkers, Tumor - blood ; Biomarkers, Tumor - chemistry ; Case-Control Studies ; Chromatography, Liquid ; Colonic Polyps - blood ; Colonic Polyps - metabolism ; Colorectal Neoplasms - blood ; Colorectal Neoplasms - metabolism ; Female ; Humans ; Male ; Metabolome - physiology ; Metabolomics - methods ; Middle Aged ; Models, Statistical ; ROC Curve ; Tandem Mass Spectrometry ; Young Adult</subject><ispartof>Journal of proteome research, 2014-09, Vol.13 (9), p.4120-4130</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</citedby><cites>FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr500494u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr500494u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25126899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jiangjiang</creatorcontrib><creatorcontrib>Djukovic, Danijel</creatorcontrib><creatorcontrib>Deng, Lingli</creatorcontrib><creatorcontrib>Gu, Haiwei</creatorcontrib><creatorcontrib>Himmati, Farhan</creatorcontrib><creatorcontrib>Chiorean, E. Gabriela</creatorcontrib><creatorcontrib>Raftery, Daniel</creatorcontrib><title>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biomarkers, Tumor - chemistry</subject><subject>Case-Control Studies</subject><subject>Chromatography, Liquid</subject><subject>Colonic Polyps - blood</subject><subject>Colonic Polyps - metabolism</subject><subject>Colorectal Neoplasms - blood</subject><subject>Colorectal Neoplasms - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Metabolome - physiology</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>ROC Curve</subject><subject>Tandem Mass Spectrometry</subject><subject>Young Adult</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LtOwzAUBmALgWgpDLwA8oIEQ8CXOHFGlHKTikCinSPn5KRKlcTFTgbeHqOWTkw-tj_90vkJueTsjjPB77dOMRZn8XhEplxJFcmMpcd_s87khJx5v2GMq5TJUzIRiotEZ9mUzHPbWocwmJbmpgd0dI5DuDe2pyvf9Gu6NG4dnir6iW7s6BsOprRtA_TD2bppAzknJ7VpPV7szxlZPT0u85do8f78mj8sIiM1HyLgGHOoDGRpGVcmgVqWIDVozBTyONZCa4xVUoY_gxoAU5YKhYgCGHIhZ-Rml7t19mtEPxRd4wHb1vRoR19wlTCV6iADvd1RcNZ7h3WxdU1n3HfBWfFbWnEoLdirfexYdlgd5F9LAVzvgAFfbOzo-rDlP0E_GT9zuA</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Zhu, Jiangjiang</creator><creator>Djukovic, Danijel</creator><creator>Deng, Lingli</creator><creator>Gu, Haiwei</creator><creator>Himmati, Farhan</creator><creator>Chiorean, E. Gabriela</creator><creator>Raftery, Daniel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140905</creationdate><title>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</title><author>Zhu, Jiangjiang ; Djukovic, Danijel ; Deng, Lingli ; Gu, Haiwei ; Himmati, Farhan ; Chiorean, E. Gabriela ; Raftery, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-c1e41cdac97b4da6cf3bc38c8e95e1448288e456bda6ae8cce70725eee2c0e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biomarkers, Tumor - chemistry</topic><topic>Case-Control Studies</topic><topic>Chromatography, Liquid</topic><topic>Colonic Polyps - blood</topic><topic>Colonic Polyps - metabolism</topic><topic>Colorectal Neoplasms - blood</topic><topic>Colorectal Neoplasms - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Metabolome - physiology</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>ROC Curve</topic><topic>Tandem Mass Spectrometry</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiangjiang</creatorcontrib><creatorcontrib>Djukovic, Danijel</creatorcontrib><creatorcontrib>Deng, Lingli</creatorcontrib><creatorcontrib>Gu, Haiwei</creatorcontrib><creatorcontrib>Himmati, Farhan</creatorcontrib><creatorcontrib>Chiorean, E. Gabriela</creatorcontrib><creatorcontrib>Raftery, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiangjiang</au><au>Djukovic, Danijel</au><au>Deng, Lingli</au><au>Gu, Haiwei</au><au>Himmati, Farhan</au><au>Chiorean, E. Gabriela</au><au>Raftery, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>13</volume><issue>9</issue><spage>4120</spage><epage>4130</epage><pages>4120-4130</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography–tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares–discriminant analysis (PLS–DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS–DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25126899</pmid><doi>10.1021/pr500494u</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2014-09, Vol.13 (9), p.4120-4130
issn 1535-3893
1535-3907
language eng
recordid cdi_proquest_miscellaneous_1560578123
source MEDLINE; American Chemical Society Journals
subjects Adolescent
Adult
Aged
Aged, 80 and over
Biomarkers, Tumor - blood
Biomarkers, Tumor - chemistry
Case-Control Studies
Chromatography, Liquid
Colonic Polyps - blood
Colonic Polyps - metabolism
Colorectal Neoplasms - blood
Colorectal Neoplasms - metabolism
Female
Humans
Male
Metabolome - physiology
Metabolomics - methods
Middle Aged
Models, Statistical
ROC Curve
Tandem Mass Spectrometry
Young Adult
title Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colorectal%20Cancer%20Detection%20Using%20Targeted%20Serum%20Metabolic%20Profiling&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Zhu,%20Jiangjiang&rft.date=2014-09-05&rft.volume=13&rft.issue=9&rft.spage=4120&rft.epage=4130&rft.pages=4120-4130&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr500494u&rft_dat=%3Cproquest_cross%3E1560578123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560578123&rft_id=info:pmid/25126899&rfr_iscdi=true