Crystal structures and metal uptake capacity of 10aa-manganates: An overview

Marine and synthetic 10aa-manganates and terrestrial todorokites have similar tunnel structures. Each tunnel wall consists of 3 edge-shared [(Mn4+, Me(2+,3+), Mn2+)(O2-, OH-)6] octahedral strings along the tunnel, where Me(2+,3+) represents transition cations such as Fe3+, Co2+, Ni2+ and Cu2+. A cei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine geology 1996-07, Vol.133 (1-2), p.103-112
1. Verfasser: Lei, Guobin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1-2
container_start_page 103
container_title Marine geology
container_volume 133
creator Lei, Guobin
description Marine and synthetic 10aa-manganates and terrestrial todorokites have similar tunnel structures. Each tunnel wall consists of 3 edge-shared [(Mn4+, Me(2+,3+), Mn2+)(O2-, OH-)6] octahedral strings along the tunnel, where Me(2+,3+) represents transition cations such as Fe3+, Co2+, Ni2+ and Cu2+. A ceiling or floor is composed of n edge-shared [Mn4+O2-6] octahedral strings along the tunnel. A tunnel is filled mainly by n-2 edge-shared [Me(1+,2+)(OH-, H2O)6] octahedral strings, where Me(1+,2+) stands for alkali and alkaline earth cations such as Na+, Ca2+ and Ba2+. The n numbers are invariant along the direction normal to the ceilings except where lattice defects occur, but vary randomly along the direction normal to the walls. The interlayer strength of the phases increases with the substitution of Me(2+,3+) for Mn2+ ions, the oxidation of Mn2+ to Mn4+ ions and the concomitant change of their OH- to O2- ligands in the walls. The ideal lattice of these phases appears to be orthorhombic, but some crystals may be monoclinic mainly because of inhomogeneous cation distributions in the walls and wall distortion.The crystallochemical formulae for the phases can be generalized asMe(1+,2+)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_15605449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15605449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a549-c3777a953b6a7b57a00516239ffae5ba4f04d62d88017adc687ef11d79d429a73</originalsourceid><addsrcrecordid>eNotzLtqwzAUgGENLSRN-w6auhmObpbVLZjewJAleziWjoJb32rJKXn7Utrph2_4b9gWQJpCSWk37C6lDwAQSsgta-rlmjL2POVl9XldKHEcAx_oF9c54ydxjzP6Ll_5FLkAxGLA8YwjZkpPfD_y6ULLpaPve3YbsU_08N8dO748H-u3ojm8vtf7pkCjXeGVtRadUW2JtjUWAYwopXIxIpkWdQQdShmqCoTF4MvKUhQiWBe0dGjVjj3-bedl-lop5dPQJU99jyNNazoJU4LR2qkfZI9JcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15605449</pqid></control><display><type>article</type><title>Crystal structures and metal uptake capacity of 10aa-manganates: An overview</title><source>Elsevier ScienceDirect Journals</source><creator>Lei, Guobin</creator><creatorcontrib>Lei, Guobin</creatorcontrib><description>Marine and synthetic 10aa-manganates and terrestrial todorokites have similar tunnel structures. Each tunnel wall consists of 3 edge-shared [(Mn4+, Me(2+,3+), Mn2+)(O2-, OH-)6] octahedral strings along the tunnel, where Me(2+,3+) represents transition cations such as Fe3+, Co2+, Ni2+ and Cu2+. A ceiling or floor is composed of n edge-shared [Mn4+O2-6] octahedral strings along the tunnel. A tunnel is filled mainly by n-2 edge-shared [Me(1+,2+)(OH-, H2O)6] octahedral strings, where Me(1+,2+) stands for alkali and alkaline earth cations such as Na+, Ca2+ and Ba2+. The n numbers are invariant along the direction normal to the ceilings except where lattice defects occur, but vary randomly along the direction normal to the walls. The interlayer strength of the phases increases with the substitution of Me(2+,3+) for Mn2+ ions, the oxidation of Mn2+ to Mn4+ ions and the concomitant change of their OH- to O2- ligands in the walls. The ideal lattice of these phases appears to be orthorhombic, but some crystals may be monoclinic mainly because of inhomogeneous cation distributions in the walls and wall distortion.The crystallochemical formulae for the phases can be generalized asMe(1+,2+)&lt;(X; -2)(Mn4+, Me(2+,3+), Mn2+)3Mn4+X; O2-2n X; &lt;(O2-, OH-)6 (OH-)2(n-3).4H2Owhere X; denotes the mean of n numbers and is equal to or larger than 3. The upper limit in Me(2+,3+)/Mn molar ratios is 3/nX; . The presence of Mn2+ ions or an easy collapse of interlayers upon drying indicates unsaturation with trace cations.</description><identifier>ISSN: 0025-3227</identifier><language>eng</language><ispartof>Marine geology, 1996-07, Vol.133 (1-2), p.103-112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Lei, Guobin</creatorcontrib><title>Crystal structures and metal uptake capacity of 10aa-manganates: An overview</title><title>Marine geology</title><description>Marine and synthetic 10aa-manganates and terrestrial todorokites have similar tunnel structures. Each tunnel wall consists of 3 edge-shared [(Mn4+, Me(2+,3+), Mn2+)(O2-, OH-)6] octahedral strings along the tunnel, where Me(2+,3+) represents transition cations such as Fe3+, Co2+, Ni2+ and Cu2+. A ceiling or floor is composed of n edge-shared [Mn4+O2-6] octahedral strings along the tunnel. A tunnel is filled mainly by n-2 edge-shared [Me(1+,2+)(OH-, H2O)6] octahedral strings, where Me(1+,2+) stands for alkali and alkaline earth cations such as Na+, Ca2+ and Ba2+. The n numbers are invariant along the direction normal to the ceilings except where lattice defects occur, but vary randomly along the direction normal to the walls. The interlayer strength of the phases increases with the substitution of Me(2+,3+) for Mn2+ ions, the oxidation of Mn2+ to Mn4+ ions and the concomitant change of their OH- to O2- ligands in the walls. The ideal lattice of these phases appears to be orthorhombic, but some crystals may be monoclinic mainly because of inhomogeneous cation distributions in the walls and wall distortion.The crystallochemical formulae for the phases can be generalized asMe(1+,2+)&lt;(X; -2)(Mn4+, Me(2+,3+), Mn2+)3Mn4+X; O2-2n X; &lt;(O2-, OH-)6 (OH-)2(n-3).4H2Owhere X; denotes the mean of n numbers and is equal to or larger than 3. The upper limit in Me(2+,3+)/Mn molar ratios is 3/nX; . The presence of Mn2+ ions or an easy collapse of interlayers upon drying indicates unsaturation with trace cations.</description><issn>0025-3227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNotzLtqwzAUgGENLSRN-w6auhmObpbVLZjewJAleziWjoJb32rJKXn7Utrph2_4b9gWQJpCSWk37C6lDwAQSsgta-rlmjL2POVl9XldKHEcAx_oF9c54ydxjzP6Ll_5FLkAxGLA8YwjZkpPfD_y6ULLpaPve3YbsU_08N8dO748H-u3ojm8vtf7pkCjXeGVtRadUW2JtjUWAYwopXIxIpkWdQQdShmqCoTF4MvKUhQiWBe0dGjVjj3-bedl-lop5dPQJU99jyNNazoJU4LR2qkfZI9JcQ</recordid><startdate>199607</startdate><enddate>199607</enddate><creator>Lei, Guobin</creator><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>199607</creationdate><title>Crystal structures and metal uptake capacity of 10aa-manganates: An overview</title><author>Lei, Guobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a549-c3777a953b6a7b57a00516239ffae5ba4f04d62d88017adc687ef11d79d429a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Guobin</creatorcontrib><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Marine geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Guobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structures and metal uptake capacity of 10aa-manganates: An overview</atitle><jtitle>Marine geology</jtitle><date>1996-07</date><risdate>1996</risdate><volume>133</volume><issue>1-2</issue><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0025-3227</issn><abstract>Marine and synthetic 10aa-manganates and terrestrial todorokites have similar tunnel structures. Each tunnel wall consists of 3 edge-shared [(Mn4+, Me(2+,3+), Mn2+)(O2-, OH-)6] octahedral strings along the tunnel, where Me(2+,3+) represents transition cations such as Fe3+, Co2+, Ni2+ and Cu2+. A ceiling or floor is composed of n edge-shared [Mn4+O2-6] octahedral strings along the tunnel. A tunnel is filled mainly by n-2 edge-shared [Me(1+,2+)(OH-, H2O)6] octahedral strings, where Me(1+,2+) stands for alkali and alkaline earth cations such as Na+, Ca2+ and Ba2+. The n numbers are invariant along the direction normal to the ceilings except where lattice defects occur, but vary randomly along the direction normal to the walls. The interlayer strength of the phases increases with the substitution of Me(2+,3+) for Mn2+ ions, the oxidation of Mn2+ to Mn4+ ions and the concomitant change of their OH- to O2- ligands in the walls. The ideal lattice of these phases appears to be orthorhombic, but some crystals may be monoclinic mainly because of inhomogeneous cation distributions in the walls and wall distortion.The crystallochemical formulae for the phases can be generalized asMe(1+,2+)&lt;(X; -2)(Mn4+, Me(2+,3+), Mn2+)3Mn4+X; O2-2n X; &lt;(O2-, OH-)6 (OH-)2(n-3).4H2Owhere X; denotes the mean of n numbers and is equal to or larger than 3. The upper limit in Me(2+,3+)/Mn molar ratios is 3/nX; . The presence of Mn2+ ions or an easy collapse of interlayers upon drying indicates unsaturation with trace cations.</abstract><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-3227
ispartof Marine geology, 1996-07, Vol.133 (1-2), p.103-112
issn 0025-3227
language eng
recordid cdi_proquest_miscellaneous_15605449
source Elsevier ScienceDirect Journals
title Crystal structures and metal uptake capacity of 10aa-manganates: An overview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structures%20and%20metal%20uptake%20capacity%20of%2010aa-manganates:%20An%20overview&rft.jtitle=Marine%20geology&rft.au=Lei,%20Guobin&rft.date=1996-07&rft.volume=133&rft.issue=1-2&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0025-3227&rft_id=info:doi/&rft_dat=%3Cproquest%3E15605449%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15605449&rft_id=info:pmid/&rfr_iscdi=true