Ecohydrological flow networks in the subsurface
ABSTRACT Preferential flow in hillslope systems through subsurface networks developed from a range of botanical, faunal and geophysical processes have been observed and inferred for decades and may provide a large component of the bulk transport of water and solutes. However, our dominant paradigm f...
Gespeichert in:
Veröffentlicht in: | Ecohydrology 2014-08, Vol.7 (4), p.1073-1078 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 4 |
container_start_page | 1073 |
container_title | Ecohydrology |
container_volume | 7 |
creator | Band, L. E. McDonnell, J. J. Duncan, J. M. Barros, A. Bejan, A. Burt, T. Dietrich, W. E. Emanuel, R. E. Hwang, T. Katul, G. Kim, Y. McGlynn, B. Miles, B. Porporato, A. Scaife, C. Troch, P. A. |
description | ABSTRACT
Preferential flow in hillslope systems through subsurface networks developed from a range of botanical, faunal and geophysical processes have been observed and inferred for decades and may provide a large component of the bulk transport of water and solutes. However, our dominant paradigm for understanding and modelling hillslope hydrologic processes is still based on the Darcy–Richards matric flow framework, now with a set of additional methods to attempt to reproduce some of the aggregate function of the two‐phase system of network and matrix flow. We call for a community effort to design and implement a set of well planned experiments in different natural and constructed hillslopes, coupled with the development of new theory and methods to explicitly incorporate and couple the co‐evolution of subsurface flow networks as intrinsic components of hydrological, ecological and geomorphic systems. This is a major community challenge that can now benefit from new experimental infrastructure, renewal of older infrastructure and recent advances in sensor systems and computational capacity but will also require a sustained and organized interdisciplinary approach. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/eco.1525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560137561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3395171401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-e7139dd218e9b97c2dcc357f44d2fdddde7df0d70ef38dee1db757a50b970bda3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZNtlsNt2jlFqVYtX6cQzZZGK33TY12aX235tSqSg4l5nDw8vwInROcIdgnHRB2Q5hCTtALZLTLMYsTw73dy89RifezzDOSMpoC3UHyk432tnKvpdKVpGp7DpaQr22bu6jchnVU4h8U_jGGangFB0ZWXk4-95t9HI9eO7fxKPx8LZ_NYoVzVIWAyc01zohPciLnKtEK0UZN2mqE6PDANcGa47B0J4GILrgjEuGA8aFlrSNLne5K2c_GvC1WJReQVXJJdjGC8IyTChnGQn04g-d2cYtw3dBMcKTlPHkJ1A5670DI1auXEi3EQSLbXMiNCe2zQUa7-i6rGDzrxOD_vi3L30Nn3sv3VxkPPwo3u6H4nF0N3mYPA3FK_0CZe1-JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551724572</pqid></control><display><type>article</type><title>Ecohydrological flow networks in the subsurface</title><source>Access via Wiley Online Library</source><creator>Band, L. E. ; McDonnell, J. J. ; Duncan, J. M. ; Barros, A. ; Bejan, A. ; Burt, T. ; Dietrich, W. E. ; Emanuel, R. E. ; Hwang, T. ; Katul, G. ; Kim, Y. ; McGlynn, B. ; Miles, B. ; Porporato, A. ; Scaife, C. ; Troch, P. A.</creator><creatorcontrib>Band, L. E. ; McDonnell, J. J. ; Duncan, J. M. ; Barros, A. ; Bejan, A. ; Burt, T. ; Dietrich, W. E. ; Emanuel, R. E. ; Hwang, T. ; Katul, G. ; Kim, Y. ; McGlynn, B. ; Miles, B. ; Porporato, A. ; Scaife, C. ; Troch, P. A.</creatorcontrib><description>ABSTRACT
Preferential flow in hillslope systems through subsurface networks developed from a range of botanical, faunal and geophysical processes have been observed and inferred for decades and may provide a large component of the bulk transport of water and solutes. However, our dominant paradigm for understanding and modelling hillslope hydrologic processes is still based on the Darcy–Richards matric flow framework, now with a set of additional methods to attempt to reproduce some of the aggregate function of the two‐phase system of network and matrix flow. We call for a community effort to design and implement a set of well planned experiments in different natural and constructed hillslopes, coupled with the development of new theory and methods to explicitly incorporate and couple the co‐evolution of subsurface flow networks as intrinsic components of hydrological, ecological and geomorphic systems. This is a major community challenge that can now benefit from new experimental infrastructure, renewal of older infrastructure and recent advances in sensor systems and computational capacity but will also require a sustained and organized interdisciplinary approach. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1936-0584</identifier><identifier>EISSN: 1936-0592</identifier><identifier>DOI: 10.1002/eco.1525</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>co-evolution ; community challenge ; flow networks ; hillslope hydrology</subject><ispartof>Ecohydrology, 2014-08, Vol.7 (4), p.1073-1078</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-e7139dd218e9b97c2dcc357f44d2fdddde7df0d70ef38dee1db757a50b970bda3</citedby><cites>FETCH-LOGICAL-c3645-e7139dd218e9b97c2dcc357f44d2fdddde7df0d70ef38dee1db757a50b970bda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feco.1525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feco.1525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Band, L. E.</creatorcontrib><creatorcontrib>McDonnell, J. J.</creatorcontrib><creatorcontrib>Duncan, J. M.</creatorcontrib><creatorcontrib>Barros, A.</creatorcontrib><creatorcontrib>Bejan, A.</creatorcontrib><creatorcontrib>Burt, T.</creatorcontrib><creatorcontrib>Dietrich, W. E.</creatorcontrib><creatorcontrib>Emanuel, R. E.</creatorcontrib><creatorcontrib>Hwang, T.</creatorcontrib><creatorcontrib>Katul, G.</creatorcontrib><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>McGlynn, B.</creatorcontrib><creatorcontrib>Miles, B.</creatorcontrib><creatorcontrib>Porporato, A.</creatorcontrib><creatorcontrib>Scaife, C.</creatorcontrib><creatorcontrib>Troch, P. A.</creatorcontrib><title>Ecohydrological flow networks in the subsurface</title><title>Ecohydrology</title><addtitle>Ecohydrol</addtitle><description>ABSTRACT
Preferential flow in hillslope systems through subsurface networks developed from a range of botanical, faunal and geophysical processes have been observed and inferred for decades and may provide a large component of the bulk transport of water and solutes. However, our dominant paradigm for understanding and modelling hillslope hydrologic processes is still based on the Darcy–Richards matric flow framework, now with a set of additional methods to attempt to reproduce some of the aggregate function of the two‐phase system of network and matrix flow. We call for a community effort to design and implement a set of well planned experiments in different natural and constructed hillslopes, coupled with the development of new theory and methods to explicitly incorporate and couple the co‐evolution of subsurface flow networks as intrinsic components of hydrological, ecological and geomorphic systems. This is a major community challenge that can now benefit from new experimental infrastructure, renewal of older infrastructure and recent advances in sensor systems and computational capacity but will also require a sustained and organized interdisciplinary approach. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>co-evolution</subject><subject>community challenge</subject><subject>flow networks</subject><subject>hillslope hydrology</subject><issn>1936-0584</issn><issn>1936-0592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZNtlsNt2jlFqVYtX6cQzZZGK33TY12aX235tSqSg4l5nDw8vwInROcIdgnHRB2Q5hCTtALZLTLMYsTw73dy89RifezzDOSMpoC3UHyk432tnKvpdKVpGp7DpaQr22bu6jchnVU4h8U_jGGangFB0ZWXk4-95t9HI9eO7fxKPx8LZ_NYoVzVIWAyc01zohPciLnKtEK0UZN2mqE6PDANcGa47B0J4GILrgjEuGA8aFlrSNLne5K2c_GvC1WJReQVXJJdjGC8IyTChnGQn04g-d2cYtw3dBMcKTlPHkJ1A5670DI1auXEi3EQSLbXMiNCe2zQUa7-i6rGDzrxOD_vi3L30Nn3sv3VxkPPwo3u6H4nF0N3mYPA3FK_0CZe1-JA</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Band, L. E.</creator><creator>McDonnell, J. J.</creator><creator>Duncan, J. M.</creator><creator>Barros, A.</creator><creator>Bejan, A.</creator><creator>Burt, T.</creator><creator>Dietrich, W. E.</creator><creator>Emanuel, R. E.</creator><creator>Hwang, T.</creator><creator>Katul, G.</creator><creator>Kim, Y.</creator><creator>McGlynn, B.</creator><creator>Miles, B.</creator><creator>Porporato, A.</creator><creator>Scaife, C.</creator><creator>Troch, P. A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>201408</creationdate><title>Ecohydrological flow networks in the subsurface</title><author>Band, L. E. ; McDonnell, J. J. ; Duncan, J. M. ; Barros, A. ; Bejan, A. ; Burt, T. ; Dietrich, W. E. ; Emanuel, R. E. ; Hwang, T. ; Katul, G. ; Kim, Y. ; McGlynn, B. ; Miles, B. ; Porporato, A. ; Scaife, C. ; Troch, P. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-e7139dd218e9b97c2dcc357f44d2fdddde7df0d70ef38dee1db757a50b970bda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>co-evolution</topic><topic>community challenge</topic><topic>flow networks</topic><topic>hillslope hydrology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Band, L. E.</creatorcontrib><creatorcontrib>McDonnell, J. J.</creatorcontrib><creatorcontrib>Duncan, J. M.</creatorcontrib><creatorcontrib>Barros, A.</creatorcontrib><creatorcontrib>Bejan, A.</creatorcontrib><creatorcontrib>Burt, T.</creatorcontrib><creatorcontrib>Dietrich, W. E.</creatorcontrib><creatorcontrib>Emanuel, R. E.</creatorcontrib><creatorcontrib>Hwang, T.</creatorcontrib><creatorcontrib>Katul, G.</creatorcontrib><creatorcontrib>Kim, Y.</creatorcontrib><creatorcontrib>McGlynn, B.</creatorcontrib><creatorcontrib>Miles, B.</creatorcontrib><creatorcontrib>Porporato, A.</creatorcontrib><creatorcontrib>Scaife, C.</creatorcontrib><creatorcontrib>Troch, P. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecohydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Band, L. E.</au><au>McDonnell, J. J.</au><au>Duncan, J. M.</au><au>Barros, A.</au><au>Bejan, A.</au><au>Burt, T.</au><au>Dietrich, W. E.</au><au>Emanuel, R. E.</au><au>Hwang, T.</au><au>Katul, G.</au><au>Kim, Y.</au><au>McGlynn, B.</au><au>Miles, B.</au><au>Porporato, A.</au><au>Scaife, C.</au><au>Troch, P. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecohydrological flow networks in the subsurface</atitle><jtitle>Ecohydrology</jtitle><addtitle>Ecohydrol</addtitle><date>2014-08</date><risdate>2014</risdate><volume>7</volume><issue>4</issue><spage>1073</spage><epage>1078</epage><pages>1073-1078</pages><issn>1936-0584</issn><eissn>1936-0592</eissn><abstract>ABSTRACT
Preferential flow in hillslope systems through subsurface networks developed from a range of botanical, faunal and geophysical processes have been observed and inferred for decades and may provide a large component of the bulk transport of water and solutes. However, our dominant paradigm for understanding and modelling hillslope hydrologic processes is still based on the Darcy–Richards matric flow framework, now with a set of additional methods to attempt to reproduce some of the aggregate function of the two‐phase system of network and matrix flow. We call for a community effort to design and implement a set of well planned experiments in different natural and constructed hillslopes, coupled with the development of new theory and methods to explicitly incorporate and couple the co‐evolution of subsurface flow networks as intrinsic components of hydrological, ecological and geomorphic systems. This is a major community challenge that can now benefit from new experimental infrastructure, renewal of older infrastructure and recent advances in sensor systems and computational capacity but will also require a sustained and organized interdisciplinary approach. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/eco.1525</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0584 |
ispartof | Ecohydrology, 2014-08, Vol.7 (4), p.1073-1078 |
issn | 1936-0584 1936-0592 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560137561 |
source | Access via Wiley Online Library |
subjects | co-evolution community challenge flow networks hillslope hydrology |
title | Ecohydrological flow networks in the subsurface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecohydrological%20flow%20networks%20in%20the%20subsurface&rft.jtitle=Ecohydrology&rft.au=Band,%20L.%20E.&rft.date=2014-08&rft.volume=7&rft.issue=4&rft.spage=1073&rft.epage=1078&rft.pages=1073-1078&rft.issn=1936-0584&rft.eissn=1936-0592&rft_id=info:doi/10.1002/eco.1525&rft_dat=%3Cproquest_cross%3E3395171401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551724572&rft_id=info:pmid/&rfr_iscdi=true |