Using a Risk Cost-Benefit Analysis for a Sea Dike to Adapt to the Sea Level in the Vietnamese Mekong River Delta
The purpose of this study is to conduct an economic valuation of creating a concrete sea dike system as an adaptation measure to counter the impacts of a rise in sea level using a risk cost-benefit analysis framework. It uses an ex-ante approach with risk considerations for storms, floods, and salin...
Gespeichert in:
Veröffentlicht in: | Climate (Basel) 2014-06, Vol.2 (2), p.78-102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study is to conduct an economic valuation of creating a concrete sea dike system as an adaptation measure to counter the impacts of a rise in sea level using a risk cost-benefit analysis framework. It uses an ex-ante approach with risk considerations for storms, floods, and salinity by specifying probability distribution functions in a simulation process, in order to incorporate these risk factors into the analysis. The results showed that the benefits of storms and floods avoided dominated the dike options. The benefit of salinity avoided was also valuable, with annual rice and aquaculture productivity losses avoided of USD 331.25 per ha and USD 915 per ha, respectively. This study evaluated a range of dike options to adapt to climate change in the Vietnamese Mekong Delta, showing high levels of benefits compared to costs. The larger in scale the dike system options were, the higher the expected net present values (ENPVs) were. Of the dike alternatives applicable to the Vietnamese Mekong Delta, considering the impacts of sea level rise of storms, floods and raised salinity in soil from flooding, small scale dikes that can subsequently be increased in height should be a priority choice. The sensitivity analyses showed that the ENPVs of dike options were very sensitive with changes in discount rate but were not sensitive with increases in salinized areas at all. The findings provide evidence to support the necessity of the construction of a concrete sea dike system in the Vietnamese Mekong Delta, given the context of global climate change. |
---|---|
ISSN: | 2225-1154 2225-1154 |
DOI: | 10.3390/cli2020078 |