Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha

The chloroplast NADH dehydrogenase‐like (NDH) complex mediates cyclic electron transport and chloro‐respiration and consists of five sub‐omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super‐complex. In Marchantia polymorpha, 11 plastid‐encoded subunits and all th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-11, Vol.72 (4), p.683-693
Hauptverfasser: Ueda, Minoru, Kuniyoshi, Tetsuki, Yamamoto, Hiroshi, Sugimoto, Kazuhiko, Ishizaki, Kimitsune, Kohchi, Takayuki, Nishimura, Yoshiki, Shikanai, Toshiharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 4
container_start_page 683
container_title The Plant journal : for cell and molecular biology
container_volume 72
creator Ueda, Minoru
Kuniyoshi, Tetsuki
Yamamoto, Hiroshi
Sugimoto, Kazuhiko
Ishizaki, Kimitsune
Kohchi, Takayuki
Nishimura, Yoshiki
Shikanai, Toshiharu
description The chloroplast NADH dehydrogenase‐like (NDH) complex mediates cyclic electron transport and chloro‐respiration and consists of five sub‐omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super‐complex. In Marchantia polymorpha, 11 plastid‐encoded subunits and all the nuclear‐encoded subunits of the A, B, membrane and ferredoxin‐binding sub‐complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH–PSI super‐complex formation. It is also unlikely that the subunits of the lumen sub‐complex, PnsL1–L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue‐native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH–PSI super‐complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild‐type genome copies were completely segregated out, the ΔndhB lines grew like the wild‐type photoautotrophically. A post‐illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A‐insensitive, and ferredoxin‐dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.
doi_str_mv 10.1111/j.1365-313x.2012.05115.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560127431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1139618522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6295-ec0bdefd2cabafd7d240cb2ae8b0c55bb04cebb886e4242adaead07fd309e2b93</originalsourceid><addsrcrecordid>eNqNkctu1DAUhiMEotPCK4AlhMRmgu3YuSxYVMOloHKRaCV21ontTDw4cWpn1MmOR-AZeRKczhQkFoA3tnS-38c-X5IgglMS1_NNSrKcLzOS7VKKCU0xJ4SnuzvJ4rbw5W6ywFWOlwUj9Cg5DmGDMSmynN1Pjigtc1qU-SIZV64bXDCjcT2CXqGhnYJx1q2NBIuabS9vSq5BY6uRbK3zbrAQRvTh9OUZUrqdlHdr3UPQP759t-ZrpOKdVu-Q6dF78LKFfjSABmenzvmhhQfJvQZs0A8P-0ly-frVxepsef7xzdvV6flS5rTiSy1xrXSjqIQaGlUoyrCsKeiyxpLzusZM6rouy1wzyigo0KBw0agMV5rWVXaSPNvfO3h3tdVhFJ0JUlsLvXbbIAjP4_AKFsf1T5RkVU5KTmlEn_yBbtzW9_EjkaI8Y6zEM1XuKeldCF43YvCmAz8JgsUsUWzE7ErMrsQsUdxIFLsYfXRosK07rX4Fb61F4OkBgBAtNR56acJvLudlhcsici_23LWxevrvB4iLT-_mU8w_3ucbcALWPva4_BxJhjHOKlKxvxIUV5xnPwGWkc3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1125344802</pqid></control><display><type>article</type><title>Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ueda, Minoru ; Kuniyoshi, Tetsuki ; Yamamoto, Hiroshi ; Sugimoto, Kazuhiko ; Ishizaki, Kimitsune ; Kohchi, Takayuki ; Nishimura, Yoshiki ; Shikanai, Toshiharu</creator><creatorcontrib>Ueda, Minoru ; Kuniyoshi, Tetsuki ; Yamamoto, Hiroshi ; Sugimoto, Kazuhiko ; Ishizaki, Kimitsune ; Kohchi, Takayuki ; Nishimura, Yoshiki ; Shikanai, Toshiharu</creatorcontrib><description>The chloroplast NADH dehydrogenase‐like (NDH) complex mediates cyclic electron transport and chloro‐respiration and consists of five sub‐omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super‐complex. In Marchantia polymorpha, 11 plastid‐encoded subunits and all the nuclear‐encoded subunits of the A, B, membrane and ferredoxin‐binding sub‐complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH–PSI super‐complex formation. It is also unlikely that the subunits of the lumen sub‐complex, PnsL1–L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue‐native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH–PSI super‐complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild‐type genome copies were completely segregated out, the ΔndhB lines grew like the wild‐type photoautotrophically. A post‐illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A‐insensitive, and ferredoxin‐dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313x.2012.05115.x</identifier><identifier>PMID: 22862786</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Antimycin A - pharmacology ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - physiology ; Biological and medical sciences ; Chlorophyll ; chloroplast ; Chloroplasts ; Chloroplasts - enzymology ; Chloroplasts - genetics ; Chloroplasts - physiology ; electron transfer ; Electron Transport ; Electrophoresis, Polyacrylamide Gel - methods ; Enzyme Activation ; Enzymes ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; gel electrophoresis ; Gene Knockout Techniques ; genes ; Genes, Chloroplast ; Genome, Plant ; Genomics ; Light ; light intensity ; Light-Harvesting Protein Complexes - genetics ; Light-Harvesting Protein Complexes - metabolism ; Light-Harvesting Protein Complexes - physiology ; Marchantia ; Marchantia - enzymology ; Marchantia - genetics ; Marchantia - physiology ; Marchantia polymorpha ; Metabolism ; molecular weight ; mosses and liverworts ; NAD (coenzyme) ; NADH Dehydrogenase - genetics ; NADH Dehydrogenase - metabolism ; NADH Dehydrogenase - physiology ; NDH ; Oxidation-Reduction ; photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; photosystem I ; Photosystem I Protein Complex - genetics ; Photosystem I Protein Complex - metabolism ; Photosystem II Protein Complex - genetics ; Photosystem II Protein Complex - metabolism ; Plant biology ; Plant physiology and development ; plastid transformation ; Plastoquinone - metabolism ; prediction ; thallus ; Thylakoid Membrane Proteins - genetics ; Thylakoid Membrane Proteins - metabolism</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-11, Vol.72 (4), p.683-693</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6295-ec0bdefd2cabafd7d240cb2ae8b0c55bb04cebb886e4242adaead07fd309e2b93</citedby><cites>FETCH-LOGICAL-c6295-ec0bdefd2cabafd7d240cb2ae8b0c55bb04cebb886e4242adaead07fd309e2b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.05115.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.05115.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26589087$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22862786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueda, Minoru</creatorcontrib><creatorcontrib>Kuniyoshi, Tetsuki</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Sugimoto, Kazuhiko</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Kohchi, Takayuki</creatorcontrib><creatorcontrib>Nishimura, Yoshiki</creatorcontrib><creatorcontrib>Shikanai, Toshiharu</creatorcontrib><title>Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>The chloroplast NADH dehydrogenase‐like (NDH) complex mediates cyclic electron transport and chloro‐respiration and consists of five sub‐omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super‐complex. In Marchantia polymorpha, 11 plastid‐encoded subunits and all the nuclear‐encoded subunits of the A, B, membrane and ferredoxin‐binding sub‐complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH–PSI super‐complex formation. It is also unlikely that the subunits of the lumen sub‐complex, PnsL1–L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue‐native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH–PSI super‐complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild‐type genome copies were completely segregated out, the ΔndhB lines grew like the wild‐type photoautotrophically. A post‐illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A‐insensitive, and ferredoxin‐dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.</description><subject>Antimycin A - pharmacology</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Biological and medical sciences</subject><subject>Chlorophyll</subject><subject>chloroplast</subject><subject>Chloroplasts</subject><subject>Chloroplasts - enzymology</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - physiology</subject><subject>electron transfer</subject><subject>Electron Transport</subject><subject>Electrophoresis, Polyacrylamide Gel - methods</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gel electrophoresis</subject><subject>Gene Knockout Techniques</subject><subject>genes</subject><subject>Genes, Chloroplast</subject><subject>Genome, Plant</subject><subject>Genomics</subject><subject>Light</subject><subject>light intensity</subject><subject>Light-Harvesting Protein Complexes - genetics</subject><subject>Light-Harvesting Protein Complexes - metabolism</subject><subject>Light-Harvesting Protein Complexes - physiology</subject><subject>Marchantia</subject><subject>Marchantia - enzymology</subject><subject>Marchantia - genetics</subject><subject>Marchantia - physiology</subject><subject>Marchantia polymorpha</subject><subject>Metabolism</subject><subject>molecular weight</subject><subject>mosses and liverworts</subject><subject>NAD (coenzyme)</subject><subject>NADH Dehydrogenase - genetics</subject><subject>NADH Dehydrogenase - metabolism</subject><subject>NADH Dehydrogenase - physiology</subject><subject>NDH</subject><subject>Oxidation-Reduction</subject><subject>photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>photosystem I</subject><subject>Photosystem I Protein Complex - genetics</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II Protein Complex - genetics</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Plant biology</subject><subject>Plant physiology and development</subject><subject>plastid transformation</subject><subject>Plastoquinone - metabolism</subject><subject>prediction</subject><subject>thallus</subject><subject>Thylakoid Membrane Proteins - genetics</subject><subject>Thylakoid Membrane Proteins - metabolism</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhiMEotPCK4AlhMRmgu3YuSxYVMOloHKRaCV21ontTDw4cWpn1MmOR-AZeRKczhQkFoA3tnS-38c-X5IgglMS1_NNSrKcLzOS7VKKCU0xJ4SnuzvJ4rbw5W6ywFWOlwUj9Cg5DmGDMSmynN1Pjigtc1qU-SIZV64bXDCjcT2CXqGhnYJx1q2NBIuabS9vSq5BY6uRbK3zbrAQRvTh9OUZUrqdlHdr3UPQP759t-ZrpOKdVu-Q6dF78LKFfjSABmenzvmhhQfJvQZs0A8P-0ly-frVxepsef7xzdvV6flS5rTiSy1xrXSjqIQaGlUoyrCsKeiyxpLzusZM6rouy1wzyigo0KBw0agMV5rWVXaSPNvfO3h3tdVhFJ0JUlsLvXbbIAjP4_AKFsf1T5RkVU5KTmlEn_yBbtzW9_EjkaI8Y6zEM1XuKeldCF43YvCmAz8JgsUsUWzE7ErMrsQsUdxIFLsYfXRosK07rX4Fb61F4OkBgBAtNR56acJvLudlhcsici_23LWxevrvB4iLT-_mU8w_3ucbcALWPva4_BxJhjHOKlKxvxIUV5xnPwGWkc3c</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Ueda, Minoru</creator><creator>Kuniyoshi, Tetsuki</creator><creator>Yamamoto, Hiroshi</creator><creator>Sugimoto, Kazuhiko</creator><creator>Ishizaki, Kimitsune</creator><creator>Kohchi, Takayuki</creator><creator>Nishimura, Yoshiki</creator><creator>Shikanai, Toshiharu</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201211</creationdate><title>Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha</title><author>Ueda, Minoru ; Kuniyoshi, Tetsuki ; Yamamoto, Hiroshi ; Sugimoto, Kazuhiko ; Ishizaki, Kimitsune ; Kohchi, Takayuki ; Nishimura, Yoshiki ; Shikanai, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6295-ec0bdefd2cabafd7d240cb2ae8b0c55bb04cebb886e4242adaead07fd309e2b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antimycin A - pharmacology</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Biological and medical sciences</topic><topic>Chlorophyll</topic><topic>chloroplast</topic><topic>Chloroplasts</topic><topic>Chloroplasts - enzymology</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - physiology</topic><topic>electron transfer</topic><topic>Electron Transport</topic><topic>Electrophoresis, Polyacrylamide Gel - methods</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gel electrophoresis</topic><topic>Gene Knockout Techniques</topic><topic>genes</topic><topic>Genes, Chloroplast</topic><topic>Genome, Plant</topic><topic>Genomics</topic><topic>Light</topic><topic>light intensity</topic><topic>Light-Harvesting Protein Complexes - genetics</topic><topic>Light-Harvesting Protein Complexes - metabolism</topic><topic>Light-Harvesting Protein Complexes - physiology</topic><topic>Marchantia</topic><topic>Marchantia - enzymology</topic><topic>Marchantia - genetics</topic><topic>Marchantia - physiology</topic><topic>Marchantia polymorpha</topic><topic>Metabolism</topic><topic>molecular weight</topic><topic>mosses and liverworts</topic><topic>NAD (coenzyme)</topic><topic>NADH Dehydrogenase - genetics</topic><topic>NADH Dehydrogenase - metabolism</topic><topic>NADH Dehydrogenase - physiology</topic><topic>NDH</topic><topic>Oxidation-Reduction</topic><topic>photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>photosystem I</topic><topic>Photosystem I Protein Complex - genetics</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II Protein Complex - genetics</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Plant biology</topic><topic>Plant physiology and development</topic><topic>plastid transformation</topic><topic>Plastoquinone - metabolism</topic><topic>prediction</topic><topic>thallus</topic><topic>Thylakoid Membrane Proteins - genetics</topic><topic>Thylakoid Membrane Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueda, Minoru</creatorcontrib><creatorcontrib>Kuniyoshi, Tetsuki</creatorcontrib><creatorcontrib>Yamamoto, Hiroshi</creatorcontrib><creatorcontrib>Sugimoto, Kazuhiko</creatorcontrib><creatorcontrib>Ishizaki, Kimitsune</creatorcontrib><creatorcontrib>Kohchi, Takayuki</creatorcontrib><creatorcontrib>Nishimura, Yoshiki</creatorcontrib><creatorcontrib>Shikanai, Toshiharu</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueda, Minoru</au><au>Kuniyoshi, Tetsuki</au><au>Yamamoto, Hiroshi</au><au>Sugimoto, Kazuhiko</au><au>Ishizaki, Kimitsune</au><au>Kohchi, Takayuki</au><au>Nishimura, Yoshiki</au><au>Shikanai, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-11</date><risdate>2012</risdate><volume>72</volume><issue>4</issue><spage>683</spage><epage>693</epage><pages>683-693</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>The chloroplast NADH dehydrogenase‐like (NDH) complex mediates cyclic electron transport and chloro‐respiration and consists of five sub‐omplexes, which in angiosperms further associate with photosystem I (PSI) to form a super‐complex. In Marchantia polymorpha, 11 plastid‐encoded subunits and all the nuclear‐encoded subunits of the A, B, membrane and ferredoxin‐binding sub‐complexes are conserved. However, it is unlikely that the genome of this liverwort encodes Lhca5 and Lhca6, both of which mediate NDH–PSI super‐complex formation. It is also unlikely that the subunits of the lumen sub‐complex, PnsL1–L4, are encoded by the genome. Consistent with this in silico prediction, the results of blue‐native gel electrophoresis showed that NDH subunits were detected in a protein complex with lower molecular mass in Marchantia than the NDH–PSI super‐complex in Arabidopsis. Using the plastid transformation technique, we knocked out the ndhB gene in Marchantia. Although the wild‐type genome copies were completely segregated out, the ΔndhB lines grew like the wild‐type photoautotrophically. A post‐illumination transient increase in chlorophyll fluorescence, which reflects NDH activity in vivo in angiosperms, was absent in the thalli of the ΔndhB lines. In ruptured chloroplasts, antimycin A‐insensitive, and ferredoxin‐dependent plastoquinone reduction was impaired, suggesting that chloroplast NDH mediates similar electron transport in Marchantia and Arabidopsis, despite its possible difference in structure. As in angiosperms, linear electron transport was not strongly affected in the ΔndhB lines. However, the plastoquinone pool was slightly more reduced at low light intensity, suggesting that chloroplast NDH functions in redox balancing of the inter system, especially under low light conditions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22862786</pmid><doi>10.1111/j.1365-313x.2012.05115.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2012-11, Vol.72 (4), p.683-693
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1560127431
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Antimycin A - pharmacology
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - physiology
Biological and medical sciences
Chlorophyll
chloroplast
Chloroplasts
Chloroplasts - enzymology
Chloroplasts - genetics
Chloroplasts - physiology
electron transfer
Electron Transport
Electrophoresis, Polyacrylamide Gel - methods
Enzyme Activation
Enzymes
Fluorescence
Fundamental and applied biological sciences. Psychology
gel electrophoresis
Gene Knockout Techniques
genes
Genes, Chloroplast
Genome, Plant
Genomics
Light
light intensity
Light-Harvesting Protein Complexes - genetics
Light-Harvesting Protein Complexes - metabolism
Light-Harvesting Protein Complexes - physiology
Marchantia
Marchantia - enzymology
Marchantia - genetics
Marchantia - physiology
Marchantia polymorpha
Metabolism
molecular weight
mosses and liverworts
NAD (coenzyme)
NADH Dehydrogenase - genetics
NADH Dehydrogenase - metabolism
NADH Dehydrogenase - physiology
NDH
Oxidation-Reduction
photosynthesis
Photosynthesis, respiration. Anabolism, catabolism
photosystem I
Photosystem I Protein Complex - genetics
Photosystem I Protein Complex - metabolism
Photosystem II Protein Complex - genetics
Photosystem II Protein Complex - metabolism
Plant biology
Plant physiology and development
plastid transformation
Plastoquinone - metabolism
prediction
thallus
Thylakoid Membrane Proteins - genetics
Thylakoid Membrane Proteins - metabolism
title Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20and%20physiological%20function%20of%20the%20chloroplast%20NADH%20dehydrogenase%E2%80%90like%20complex%20in%20Marchantia%20polymorpha&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ueda,%20Minoru&rft.date=2012-11&rft.volume=72&rft.issue=4&rft.spage=683&rft.epage=693&rft.pages=683-693&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313x.2012.05115.x&rft_dat=%3Cproquest_cross%3E1139618522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1125344802&rft_id=info:pmid/22862786&rfr_iscdi=true