Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River

A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2014-08, Vol.43 (3-4), p.1011-1023
Hauptverfasser: Siam, Mohamed S, Wang, Guiling, Demory, Marie-Estelle, Eltahir, Elfatih A. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 3-4
container_start_page 1011
container_title Climate dynamics
container_volume 43
creator Siam, Mohamed S
Wang, Guiling
Demory, Marie-Estelle
Eltahir, Elfatih A. B
description A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.
doi_str_mv 10.1007/s00382-014-2132-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560124040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380747362</galeid><sourcerecordid>A380747362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</originalsourceid><addsrcrecordid>eNp9kl1vFCEUhidGE9fqD_DKSYyNXkwFBmbYy6bxY5PGJlt7Tc6wh10aFlZgqv33Mk5jul4YEiCc533PAU5VvabkjBLSf0yEtJI1hPKG0ZY13ZNqQXnZELnkT6sFWbak6UUvnlcvUrolBex6tqj26-CwDqbOO6xXfmPB11cay5wQ6jRGAxrrjPsDRshjxNqW0A4O1m__aPx0Cq6-g2hhsM7m-wmZQsaFn5P1N1tSrO0dxpfVMwMu4auH9aS6-fzp-8XX5vLqy-ri_LLRQra56TQ3st20IAjjQ4tgSEc3Ekk_oKGgN5waKeSSaSkYwwEH3QkkgrVSQCtJe1K9n30PMfwYMWW1t0mjc-AxjElR0RHKOOET-vYf9DaM0ZfqCsUl7YSUfaHOZmoLDpX1JuQIuowN7q0OHk25ozovuXvetx0rgg9HgsJk_JW3MKakVtfrY_b0EbtDcHmXghuzDT4dg3QGdQwpRTTqEO0e4r2iRE1toOY2UOV31dQGqiuadw_3g6TBmQhe2_RXyGRXrLksHJu5VEJ-i_HRO_zH_M0sMhAUbGMxvrlmBZj6i7NS8m-whMgR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548165887</pqid></control><display><type>article</type><title>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</title><source>SpringerNature Journals</source><creator>Siam, Mohamed S ; Wang, Guiling ; Demory, Marie-Estelle ; Eltahir, Elfatih A. B</creator><creatorcontrib>Siam, Mohamed S ; Wang, Guiling ; Demory, Marie-Estelle ; Eltahir, Elfatih A. B</creatorcontrib><description>A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-014-2132-6</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>air ; Annual variations ; Atmospheric circulation ; Boundary layers ; Climate change ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; El Nino ; Environmental impact ; Exact sciences and technology ; External geophysics ; Freshwater ; General Circulation Models ; Geophysics/Geodesy ; Global temperatures ; Hydrology ; Hydrology. Hydrogeology ; Influence ; Marine ; Marine and continental quaternary ; Meteorology ; Oceanography ; Oceans ; rain ; River flow ; Rivers ; Sea surface temperature ; Southern Oscillation ; surface temperature ; Surface water ; Surficial geology ; Teleconnections ; Temperature effects</subject><ispartof>Climate dynamics, 2014-08, Vol.43 (3-4), p.1011-1023</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</citedby><cites>FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-014-2132-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-014-2132-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28673648$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Siam, Mohamed S</creatorcontrib><creatorcontrib>Wang, Guiling</creatorcontrib><creatorcontrib>Demory, Marie-Estelle</creatorcontrib><creatorcontrib>Eltahir, Elfatih A. B</creatorcontrib><title>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.</description><subject>air</subject><subject>Annual variations</subject><subject>Atmospheric circulation</subject><subject>Boundary layers</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>Environmental impact</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Freshwater</subject><subject>General Circulation Models</subject><subject>Geophysics/Geodesy</subject><subject>Global temperatures</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Influence</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Meteorology</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>rain</subject><subject>River flow</subject><subject>Rivers</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>surface temperature</subject><subject>Surface water</subject><subject>Surficial geology</subject><subject>Teleconnections</subject><subject>Temperature effects</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl1vFCEUhidGE9fqD_DKSYyNXkwFBmbYy6bxY5PGJlt7Tc6wh10aFlZgqv33Mk5jul4YEiCc533PAU5VvabkjBLSf0yEtJI1hPKG0ZY13ZNqQXnZELnkT6sFWbak6UUvnlcvUrolBex6tqj26-CwDqbOO6xXfmPB11cay5wQ6jRGAxrrjPsDRshjxNqW0A4O1m__aPx0Cq6-g2hhsM7m-wmZQsaFn5P1N1tSrO0dxpfVMwMu4auH9aS6-fzp-8XX5vLqy-ri_LLRQra56TQ3st20IAjjQ4tgSEc3Ekk_oKGgN5waKeSSaSkYwwEH3QkkgrVSQCtJe1K9n30PMfwYMWW1t0mjc-AxjElR0RHKOOET-vYf9DaM0ZfqCsUl7YSUfaHOZmoLDpX1JuQIuowN7q0OHk25ozovuXvetx0rgg9HgsJk_JW3MKakVtfrY_b0EbtDcHmXghuzDT4dg3QGdQwpRTTqEO0e4r2iRE1toOY2UOV31dQGqiuadw_3g6TBmQhe2_RXyGRXrLksHJu5VEJ-i_HRO_zH_M0sMhAUbGMxvrlmBZj6i7NS8m-whMgR</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Siam, Mohamed S</creator><creator>Wang, Guiling</creator><creator>Demory, Marie-Estelle</creator><creator>Eltahir, Elfatih A. B</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>H97</scope></search><sort><creationdate>20140801</creationdate><title>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</title><author>Siam, Mohamed S ; Wang, Guiling ; Demory, Marie-Estelle ; Eltahir, Elfatih A. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>air</topic><topic>Annual variations</topic><topic>Atmospheric circulation</topic><topic>Boundary layers</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>Environmental impact</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Freshwater</topic><topic>General Circulation Models</topic><topic>Geophysics/Geodesy</topic><topic>Global temperatures</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Influence</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Meteorology</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>rain</topic><topic>River flow</topic><topic>Rivers</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>surface temperature</topic><topic>Surface water</topic><topic>Surficial geology</topic><topic>Teleconnections</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siam, Mohamed S</creatorcontrib><creatorcontrib>Wang, Guiling</creatorcontrib><creatorcontrib>Demory, Marie-Estelle</creatorcontrib><creatorcontrib>Eltahir, Elfatih A. B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siam, Mohamed S</au><au>Wang, Guiling</au><au>Demory, Marie-Estelle</au><au>Eltahir, Elfatih A. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>43</volume><issue>3-4</issue><spage>1011</spage><epage>1023</epage><pages>1011-1023</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-014-2132-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2014-08, Vol.43 (3-4), p.1011-1023
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_miscellaneous_1560124040
source SpringerNature Journals
subjects air
Annual variations
Atmospheric circulation
Boundary layers
Climate change
Climatology
Climatology. Bioclimatology. Climate change
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
El Nino
Environmental impact
Exact sciences and technology
External geophysics
Freshwater
General Circulation Models
Geophysics/Geodesy
Global temperatures
Hydrology
Hydrology. Hydrogeology
Influence
Marine
Marine and continental quaternary
Meteorology
Oceanography
Oceans
rain
River flow
Rivers
Sea surface temperature
Southern Oscillation
surface temperature
Surface water
Surficial geology
Teleconnections
Temperature effects
title Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20Indian%20Ocean%20sea%20surface%20temperature%20in%20shaping%20the%20natural%20variability%20in%20the%20flow%20of%20Nile%20River&rft.jtitle=Climate%20dynamics&rft.au=Siam,%20Mohamed%20S&rft.date=2014-08-01&rft.volume=43&rft.issue=3-4&rft.spage=1011&rft.epage=1023&rft.pages=1011-1023&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-014-2132-6&rft_dat=%3Cgale_proqu%3EA380747362%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548165887&rft_id=info:pmid/&rft_galeid=A380747362&rfr_iscdi=true