Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River
A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observatio...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2014-08, Vol.43 (3-4), p.1011-1023 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 3-4 |
container_start_page | 1011 |
container_title | Climate dynamics |
container_volume | 43 |
creator | Siam, Mohamed S Wang, Guiling Demory, Marie-Estelle Eltahir, Elfatih A. B |
description | A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin. |
doi_str_mv | 10.1007/s00382-014-2132-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560124040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380747362</galeid><sourcerecordid>A380747362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</originalsourceid><addsrcrecordid>eNp9kl1vFCEUhidGE9fqD_DKSYyNXkwFBmbYy6bxY5PGJlt7Tc6wh10aFlZgqv33Mk5jul4YEiCc533PAU5VvabkjBLSf0yEtJI1hPKG0ZY13ZNqQXnZELnkT6sFWbak6UUvnlcvUrolBex6tqj26-CwDqbOO6xXfmPB11cay5wQ6jRGAxrrjPsDRshjxNqW0A4O1m__aPx0Cq6-g2hhsM7m-wmZQsaFn5P1N1tSrO0dxpfVMwMu4auH9aS6-fzp-8XX5vLqy-ri_LLRQra56TQ3st20IAjjQ4tgSEc3Ekk_oKGgN5waKeSSaSkYwwEH3QkkgrVSQCtJe1K9n30PMfwYMWW1t0mjc-AxjElR0RHKOOET-vYf9DaM0ZfqCsUl7YSUfaHOZmoLDpX1JuQIuowN7q0OHk25ozovuXvetx0rgg9HgsJk_JW3MKakVtfrY_b0EbtDcHmXghuzDT4dg3QGdQwpRTTqEO0e4r2iRE1toOY2UOV31dQGqiuadw_3g6TBmQhe2_RXyGRXrLksHJu5VEJ-i_HRO_zH_M0sMhAUbGMxvrlmBZj6i7NS8m-whMgR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548165887</pqid></control><display><type>article</type><title>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</title><source>SpringerNature Journals</source><creator>Siam, Mohamed S ; Wang, Guiling ; Demory, Marie-Estelle ; Eltahir, Elfatih A. B</creator><creatorcontrib>Siam, Mohamed S ; Wang, Guiling ; Demory, Marie-Estelle ; Eltahir, Elfatih A. B</creatorcontrib><description>A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-014-2132-6</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>air ; Annual variations ; Atmospheric circulation ; Boundary layers ; Climate change ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; El Nino ; Environmental impact ; Exact sciences and technology ; External geophysics ; Freshwater ; General Circulation Models ; Geophysics/Geodesy ; Global temperatures ; Hydrology ; Hydrology. Hydrogeology ; Influence ; Marine ; Marine and continental quaternary ; Meteorology ; Oceanography ; Oceans ; rain ; River flow ; Rivers ; Sea surface temperature ; Southern Oscillation ; surface temperature ; Surface water ; Surficial geology ; Teleconnections ; Temperature effects</subject><ispartof>Climate dynamics, 2014-08, Vol.43 (3-4), p.1011-1023</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</citedby><cites>FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-014-2132-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-014-2132-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28673648$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Siam, Mohamed S</creatorcontrib><creatorcontrib>Wang, Guiling</creatorcontrib><creatorcontrib>Demory, Marie-Estelle</creatorcontrib><creatorcontrib>Eltahir, Elfatih A. B</creatorcontrib><title>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.</description><subject>air</subject><subject>Annual variations</subject><subject>Atmospheric circulation</subject><subject>Boundary layers</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>Environmental impact</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Freshwater</subject><subject>General Circulation Models</subject><subject>Geophysics/Geodesy</subject><subject>Global temperatures</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Influence</subject><subject>Marine</subject><subject>Marine and continental quaternary</subject><subject>Meteorology</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>rain</subject><subject>River flow</subject><subject>Rivers</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>surface temperature</subject><subject>Surface water</subject><subject>Surficial geology</subject><subject>Teleconnections</subject><subject>Temperature effects</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl1vFCEUhidGE9fqD_DKSYyNXkwFBmbYy6bxY5PGJlt7Tc6wh10aFlZgqv33Mk5jul4YEiCc533PAU5VvabkjBLSf0yEtJI1hPKG0ZY13ZNqQXnZELnkT6sFWbak6UUvnlcvUrolBex6tqj26-CwDqbOO6xXfmPB11cay5wQ6jRGAxrrjPsDRshjxNqW0A4O1m__aPx0Cq6-g2hhsM7m-wmZQsaFn5P1N1tSrO0dxpfVMwMu4auH9aS6-fzp-8XX5vLqy-ri_LLRQra56TQ3st20IAjjQ4tgSEc3Ekk_oKGgN5waKeSSaSkYwwEH3QkkgrVSQCtJe1K9n30PMfwYMWW1t0mjc-AxjElR0RHKOOET-vYf9DaM0ZfqCsUl7YSUfaHOZmoLDpX1JuQIuowN7q0OHk25ozovuXvetx0rgg9HgsJk_JW3MKakVtfrY_b0EbtDcHmXghuzDT4dg3QGdQwpRTTqEO0e4r2iRE1toOY2UOV31dQGqiuadw_3g6TBmQhe2_RXyGRXrLksHJu5VEJ-i_HRO_zH_M0sMhAUbGMxvrlmBZj6i7NS8m-whMgR</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Siam, Mohamed S</creator><creator>Wang, Guiling</creator><creator>Demory, Marie-Estelle</creator><creator>Eltahir, Elfatih A. B</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>H97</scope></search><sort><creationdate>20140801</creationdate><title>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</title><author>Siam, Mohamed S ; Wang, Guiling ; Demory, Marie-Estelle ; Eltahir, Elfatih A. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-6c4f83d3a5024b3eaf061d8e07bef1acd41f85892c8522ebebc65e052385a3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>air</topic><topic>Annual variations</topic><topic>Atmospheric circulation</topic><topic>Boundary layers</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>Environmental impact</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Freshwater</topic><topic>General Circulation Models</topic><topic>Geophysics/Geodesy</topic><topic>Global temperatures</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Influence</topic><topic>Marine</topic><topic>Marine and continental quaternary</topic><topic>Meteorology</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>rain</topic><topic>River flow</topic><topic>Rivers</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>surface temperature</topic><topic>Surface water</topic><topic>Surficial geology</topic><topic>Teleconnections</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siam, Mohamed S</creatorcontrib><creatorcontrib>Wang, Guiling</creatorcontrib><creatorcontrib>Demory, Marie-Estelle</creatorcontrib><creatorcontrib>Eltahir, Elfatih A. B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siam, Mohamed S</au><au>Wang, Guiling</au><au>Demory, Marie-Estelle</au><au>Eltahir, Elfatih A. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>43</volume><issue>3-4</issue><spage>1011</spage><epage>1023</epage><pages>1011-1023</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>A significant fraction of the inter-annual variability in the Nile River flow is shaped by El Niño Southern Oscillation (ENSO). Here, we investigate a similar role for the Indian Ocean (IO) sea surface temperature (SST) in shaping the inter-annual variability of the Nile River flow. Using observations of global SST distribution and river flow in addition to atmospheric general circulation model sensitivity experiments, we show that North and Middle IO SSTs play a significant intermediate role in the teleconnection between ENSO and the Nile flow. Applying partial coherency analyses, we demonstrate that the connection between North and Middle IO SSTs and Nile flow is strongly coupled to ENSO. During El Niño events, SST in the North and Middle IO increases in response to the warming in the Tropical Eastern Pacific Ocean and forces a Gill-type circulation with enhanced westerly low-level flow over East Africa and the Western IO. This anomalous low-level flow enhances the low-level flux of air and moisture away from the Upper Blue Nile (UBN) basin resulting in reduction of rainfall and river flow. SSTs in the South IO also play a significant role in shaping the variability of the Nile flow that is independent from ENSO. A warming over the South IO, generates a cyclonic flow in the boundary layer, which reduces the cross-equatorial meridional transport of air and moisture towards the UBN basin, favoring a reduction in rainfall and river flow. This independence between the roles of ENSO and South IO SSTs allows for development of new combined indices of SSTs to explain the inter-annual variability of the Nile flow. The proposed teleconnections have important implications regarding mechanisms that shape the regional impacts of climate change over the Nile basin.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00382-014-2132-6</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2014-08, Vol.43 (3-4), p.1011-1023 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560124040 |
source | SpringerNature Journals |
subjects | air Annual variations Atmospheric circulation Boundary layers Climate change Climatology Climatology. Bioclimatology. Climate change Earth and Environmental Science Earth Sciences Earth, ocean, space El Nino Environmental impact Exact sciences and technology External geophysics Freshwater General Circulation Models Geophysics/Geodesy Global temperatures Hydrology Hydrology. Hydrogeology Influence Marine Marine and continental quaternary Meteorology Oceanography Oceans rain River flow Rivers Sea surface temperature Southern Oscillation surface temperature Surface water Surficial geology Teleconnections Temperature effects |
title | Role of the Indian Ocean sea surface temperature in shaping the natural variability in the flow of Nile River |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20Indian%20Ocean%20sea%20surface%20temperature%20in%20shaping%20the%20natural%20variability%20in%20the%20flow%20of%20Nile%20River&rft.jtitle=Climate%20dynamics&rft.au=Siam,%20Mohamed%20S&rft.date=2014-08-01&rft.volume=43&rft.issue=3-4&rft.spage=1011&rft.epage=1023&rft.pages=1011-1023&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-014-2132-6&rft_dat=%3Cgale_proqu%3EA380747362%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548165887&rft_id=info:pmid/&rft_galeid=A380747362&rfr_iscdi=true |