Stability analysis of switched stochastic neural networks with time-varying delays
This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Ly...
Gespeichert in:
Veröffentlicht in: | Neural networks 2014-03, Vol.51, p.39-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | |
container_start_page | 39 |
container_title | Neural networks |
container_volume | 51 |
creator | Wu, Xiaotai Tang, Yang Zhang, Wenbing |
description | This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples. |
doi_str_mv | 10.1016/j.neunet.2013.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560120154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608013002955</els_id><sourcerecordid>1560120154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERZfCP0AoFyQuST3-SnJBQlX5kCohFThbjj1hvWST4vG22n9fr3aBG5zeyzPzzjyMvQLeAAdzuWlm3M2YG8FBNiAazuEJW0HX9rVoO_GUrXjXy9rwjp-z50QbzrnplHzGzoWSRmupV-z2a3ZDnGLeV252054iVctY0UPMfo2horz4taMcfVXqkptK5Icl_aSqIOsqxy3W9y7t4_yjCji5Pb1gZ6ObCF-e8oJ9_3D97epTffPl4-er9ze1V0LnGkIX1ChQ9Z5zpaHtByelAfStLh-h8DhK1NwEI8Zx0ABDOTloowBG57W8YG-Pe-_S8muHlO02ksdpcjMuO7KgDYciR6v_o6oXpldGtAVVR9SnhSjhaO9S3JYHLXB7EG839ijeHsRbELaIL2OvTw27YYvhz9Bv0wV4cwIceTeNyc0-0l-uk6Lt5aH_3ZHDou4-YrLkI84eQ0zosw1L_Pclj20oo0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492694627</pqid></control><display><type>article</type><title>Stability analysis of switched stochastic neural networks with time-varying delays</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wu, Xiaotai ; Tang, Yang ; Zhang, Wenbing</creator><creatorcontrib>Wu, Xiaotai ; Tang, Yang ; Zhang, Wenbing</creatorcontrib><description>This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2013.12.001</identifier><identifier>PMID: 24365535</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Exponential stability ; Linear matrix inequality ; Linear Models ; Neural networks ; Neural Networks (Computer) ; Stochastic Processes ; Switched systems ; System theory ; Time Factors ; Time-varying delays</subject><ispartof>Neural networks, 2014-03, Vol.51, p.39-49</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</citedby><cites>FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2013.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28327937$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24365535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaotai</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Zhang, Wenbing</creatorcontrib><title>Stability analysis of switched stochastic neural networks with time-varying delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Exponential stability</subject><subject>Linear matrix inequality</subject><subject>Linear Models</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Stochastic Processes</subject><subject>Switched systems</subject><subject>System theory</subject><subject>Time Factors</subject><subject>Time-varying delays</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERZfCP0AoFyQuST3-SnJBQlX5kCohFThbjj1hvWST4vG22n9fr3aBG5zeyzPzzjyMvQLeAAdzuWlm3M2YG8FBNiAazuEJW0HX9rVoO_GUrXjXy9rwjp-z50QbzrnplHzGzoWSRmupV-z2a3ZDnGLeV252054iVctY0UPMfo2horz4taMcfVXqkptK5Icl_aSqIOsqxy3W9y7t4_yjCji5Pb1gZ6ObCF-e8oJ9_3D97epTffPl4-er9ze1V0LnGkIX1ChQ9Z5zpaHtByelAfStLh-h8DhK1NwEI8Zx0ABDOTloowBG57W8YG-Pe-_S8muHlO02ksdpcjMuO7KgDYciR6v_o6oXpldGtAVVR9SnhSjhaO9S3JYHLXB7EG839ijeHsRbELaIL2OvTw27YYvhz9Bv0wV4cwIceTeNyc0-0l-uk6Lt5aH_3ZHDou4-YrLkI84eQ0zosw1L_Pclj20oo0U</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Wu, Xiaotai</creator><creator>Tang, Yang</creator><creator>Zhang, Wenbing</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140301</creationdate><title>Stability analysis of switched stochastic neural networks with time-varying delays</title><author>Wu, Xiaotai ; Tang, Yang ; Zhang, Wenbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Exponential stability</topic><topic>Linear matrix inequality</topic><topic>Linear Models</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Stochastic Processes</topic><topic>Switched systems</topic><topic>System theory</topic><topic>Time Factors</topic><topic>Time-varying delays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaotai</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Zhang, Wenbing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaotai</au><au>Tang, Yang</au><au>Zhang, Wenbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of switched stochastic neural networks with time-varying delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>51</volume><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24365535</pmid><doi>10.1016/j.neunet.2013.12.001</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2014-03, Vol.51, p.39-49 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560120154 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Applied sciences Artificial intelligence Computer science control theory systems Computer Simulation Connectionism. Neural networks Control system analysis Control theory. Systems Exact sciences and technology Exponential stability Linear matrix inequality Linear Models Neural networks Neural Networks (Computer) Stochastic Processes Switched systems System theory Time Factors Time-varying delays |
title | Stability analysis of switched stochastic neural networks with time-varying delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20switched%20stochastic%20neural%20networks%20with%20time-varying%20delays&rft.jtitle=Neural%20networks&rft.au=Wu,%20Xiaotai&rft.date=2014-03-01&rft.volume=51&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2013.12.001&rft_dat=%3Cproquest_cross%3E1560120154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492694627&rft_id=info:pmid/24365535&rft_els_id=S0893608013002955&rfr_iscdi=true |