Stability analysis of switched stochastic neural networks with time-varying delays

This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Ly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2014-03, Vol.51, p.39-49
Hauptverfasser: Wu, Xiaotai, Tang, Yang, Zhang, Wenbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue
container_start_page 39
container_title Neural networks
container_volume 51
creator Wu, Xiaotai
Tang, Yang
Zhang, Wenbing
description This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.
doi_str_mv 10.1016/j.neunet.2013.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560120154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608013002955</els_id><sourcerecordid>1560120154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1ERZfCP0AoFyQuST3-SnJBQlX5kCohFThbjj1hvWST4vG22n9fr3aBG5zeyzPzzjyMvQLeAAdzuWlm3M2YG8FBNiAazuEJW0HX9rVoO_GUrXjXy9rwjp-z50QbzrnplHzGzoWSRmupV-z2a3ZDnGLeV252054iVctY0UPMfo2horz4taMcfVXqkptK5Icl_aSqIOsqxy3W9y7t4_yjCji5Pb1gZ6ObCF-e8oJ9_3D97epTffPl4-er9ze1V0LnGkIX1ChQ9Z5zpaHtByelAfStLh-h8DhK1NwEI8Zx0ABDOTloowBG57W8YG-Pe-_S8muHlO02ksdpcjMuO7KgDYciR6v_o6oXpldGtAVVR9SnhSjhaO9S3JYHLXB7EG839ijeHsRbELaIL2OvTw27YYvhz9Bv0wV4cwIceTeNyc0-0l-uk6Lt5aH_3ZHDou4-YrLkI84eQ0zosw1L_Pclj20oo0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492694627</pqid></control><display><type>article</type><title>Stability analysis of switched stochastic neural networks with time-varying delays</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wu, Xiaotai ; Tang, Yang ; Zhang, Wenbing</creator><creatorcontrib>Wu, Xiaotai ; Tang, Yang ; Zhang, Wenbing</creatorcontrib><description>This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2013.12.001</identifier><identifier>PMID: 24365535</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Exponential stability ; Linear matrix inequality ; Linear Models ; Neural networks ; Neural Networks (Computer) ; Stochastic Processes ; Switched systems ; System theory ; Time Factors ; Time-varying delays</subject><ispartof>Neural networks, 2014-03, Vol.51, p.39-49</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</citedby><cites>FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2013.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28327937$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24365535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaotai</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Zhang, Wenbing</creatorcontrib><title>Stability analysis of switched stochastic neural networks with time-varying delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Exponential stability</subject><subject>Linear matrix inequality</subject><subject>Linear Models</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Stochastic Processes</subject><subject>Switched systems</subject><subject>System theory</subject><subject>Time Factors</subject><subject>Time-varying delays</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi1ERZfCP0AoFyQuST3-SnJBQlX5kCohFThbjj1hvWST4vG22n9fr3aBG5zeyzPzzjyMvQLeAAdzuWlm3M2YG8FBNiAazuEJW0HX9rVoO_GUrXjXy9rwjp-z50QbzrnplHzGzoWSRmupV-z2a3ZDnGLeV252054iVctY0UPMfo2horz4taMcfVXqkptK5Icl_aSqIOsqxy3W9y7t4_yjCji5Pb1gZ6ObCF-e8oJ9_3D97epTffPl4-er9ze1V0LnGkIX1ChQ9Z5zpaHtByelAfStLh-h8DhK1NwEI8Zx0ABDOTloowBG57W8YG-Pe-_S8muHlO02ksdpcjMuO7KgDYciR6v_o6oXpldGtAVVR9SnhSjhaO9S3JYHLXB7EG839ijeHsRbELaIL2OvTw27YYvhz9Bv0wV4cwIceTeNyc0-0l-uk6Lt5aH_3ZHDou4-YrLkI84eQ0zosw1L_Pclj20oo0U</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Wu, Xiaotai</creator><creator>Tang, Yang</creator><creator>Zhang, Wenbing</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140301</creationdate><title>Stability analysis of switched stochastic neural networks with time-varying delays</title><author>Wu, Xiaotai ; Tang, Yang ; Zhang, Wenbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-1d8d4f2e49c0045179ba3361ec75013e2cef3e506d62ffb511b553d56411fac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Exponential stability</topic><topic>Linear matrix inequality</topic><topic>Linear Models</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Stochastic Processes</topic><topic>Switched systems</topic><topic>System theory</topic><topic>Time Factors</topic><topic>Time-varying delays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaotai</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Zhang, Wenbing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaotai</au><au>Tang, Yang</au><au>Zhang, Wenbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of switched stochastic neural networks with time-varying delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>51</volume><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24365535</pmid><doi>10.1016/j.neunet.2013.12.001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2014-03, Vol.51, p.39-49
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1560120154
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer Simulation
Connectionism. Neural networks
Control system analysis
Control theory. Systems
Exact sciences and technology
Exponential stability
Linear matrix inequality
Linear Models
Neural networks
Neural Networks (Computer)
Stochastic Processes
Switched systems
System theory
Time Factors
Time-varying delays
title Stability analysis of switched stochastic neural networks with time-varying delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20switched%20stochastic%20neural%20networks%20with%20time-varying%20delays&rft.jtitle=Neural%20networks&rft.au=Wu,%20Xiaotai&rft.date=2014-03-01&rft.volume=51&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2013.12.001&rft_dat=%3Cproquest_cross%3E1560120154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492694627&rft_id=info:pmid/24365535&rft_els_id=S0893608013002955&rfr_iscdi=true