Impacts of Satellite-Based Rainfall Products on Predicting Spatial Patterns of Rift Valley Fever Vectors
Spatiotemporal rainfall variability is a key parameter controlling the dynamics of mosquitoes/vector-borne diseases such as malaria, Rift Valley fever (RVF), or dengue. Impacts from rainfall heterogeneity at small scales (i.e., 1–10 km) on the risk of epidemics (i.e., host bite rate or number of bit...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2014-08, Vol.15 (4), p.1624-1635 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1635 |
---|---|
container_issue | 4 |
container_start_page | 1624 |
container_title | Journal of hydrometeorology |
container_volume | 15 |
creator | Guilloteau, Clement Gosset, Marielle Vignolles, Cecile Alcoba, Matias Tourre, Yves M. Lacaux, Jean-Pierre |
description | Spatiotemporal rainfall variability is a key parameter controlling the dynamics of mosquitoes/vector-borne diseases such as malaria, Rift Valley fever (RVF), or dengue. Impacts from rainfall heterogeneity at small scales (i.e., 1–10 km) on the risk of epidemics (i.e., host bite rate or number of bites per host and per night) must be thoroughly evaluated. A model with hydrological and entomological components for risk prediction of the RVF zoonosis is proposed. The model predicts the production of two mosquito species within a 45 km × 45 km area in the Ferlo region, Senegal. The three necessary steps include 1) best rainfall estimation on a small scale, 2) adequate forcing of a simple hydrological model leading to pond dynamics (ponds are the primary larvae breeding grounds), and 3) best estimate of mosquito life cycles obtained from the coupled entomological model. The sensitivity of the model to the spatiotemporal heterogeneity of rainfall is first tested using high-resolution rain fields from a weather radar. The need for high-resolution rain data is thus demonstrated. Several high-resolution satellite rainfall products are evaluated in the region of interest using a dense rain gauge network. Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42, version 6 (TMPA-3B42V6), and 3B42 in real time (TMPA-3B42RT); Global Satellite Mapping of Precipitation (GSMaP) in near–real time (GSMaP-NRT) and Moving Vector with Kalman version (GSMa-PMVK); African Rainfall Estimation Algorithm, version 2.0 (RFE 2.0); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) are tested and finally corrected using a probability matching method. The corrected products are then used as forcing to the coupled model over the 2003–10 period. The predicted number and size of ponds and their dynamics are greatly improved compared to the model forced only by a single gauge. A more realistic spatiotemporal distribution of the host bite rate of the RVF vectors is thus expected. |
doi_str_mv | 10.1175/JHM-D-13-0134.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560116650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24914534</jstor_id><sourcerecordid>24914534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-e088054bc5f82059651cb618540795b2f33646fd6007b6bd5f232c910a4ad6e33</originalsourceid><addsrcrecordid>eNo9kM9PwjAcxRujiYiePZns6GXQ7_pj21FRBIPRgBJvTdd1WjK22RYT_nsLGE7fl3w_7yXvIXQNeACQsuHz5CV-iIHEGAgdwAnqAUtYnDIKp0fNPs_RhXMrjDHNIeuh7-m6k8q7qK2ihfS6ro3X8b10uozm0jSVrOvozbblZg81QevSKG-ar2jRSW9keEvvtW32GXNT-WgZTHobjfWvttFSK99ad4nOQpbTV_-3jz7Gj--jSTx7fZqO7maxSnjqY42zDDNaKFZlCWY5Z6AKDhmjOM1ZkVSEcMqrkmOcFrwoWZWQROWAJZUl14T00e0ht7Ptz0Y7L9bGqdBLNrrdOAGMYwDOGQ7o8IAq2zpndSU6a9bSbgVgsdtUhE3FgwAidpuG20c3B8fKhU5HPAlbUkYo-QMMl3Mj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560116650</pqid></control><display><type>article</type><title>Impacts of Satellite-Based Rainfall Products on Predicting Spatial Patterns of Rift Valley Fever Vectors</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Guilloteau, Clement ; Gosset, Marielle ; Vignolles, Cecile ; Alcoba, Matias ; Tourre, Yves M. ; Lacaux, Jean-Pierre</creator><creatorcontrib>Guilloteau, Clement ; Gosset, Marielle ; Vignolles, Cecile ; Alcoba, Matias ; Tourre, Yves M. ; Lacaux, Jean-Pierre</creatorcontrib><description>Spatiotemporal rainfall variability is a key parameter controlling the dynamics of mosquitoes/vector-borne diseases such as malaria, Rift Valley fever (RVF), or dengue. Impacts from rainfall heterogeneity at small scales (i.e., 1–10 km) on the risk of epidemics (i.e., host bite rate or number of bites per host and per night) must be thoroughly evaluated. A model with hydrological and entomological components for risk prediction of the RVF zoonosis is proposed. The model predicts the production of two mosquito species within a 45 km × 45 km area in the Ferlo region, Senegal. The three necessary steps include 1) best rainfall estimation on a small scale, 2) adequate forcing of a simple hydrological model leading to pond dynamics (ponds are the primary larvae breeding grounds), and 3) best estimate of mosquito life cycles obtained from the coupled entomological model. The sensitivity of the model to the spatiotemporal heterogeneity of rainfall is first tested using high-resolution rain fields from a weather radar. The need for high-resolution rain data is thus demonstrated. Several high-resolution satellite rainfall products are evaluated in the region of interest using a dense rain gauge network. Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42, version 6 (TMPA-3B42V6), and 3B42 in real time (TMPA-3B42RT); Global Satellite Mapping of Precipitation (GSMaP) in near–real time (GSMaP-NRT) and Moving Vector with Kalman version (GSMa-PMVK); African Rainfall Estimation Algorithm, version 2.0 (RFE 2.0); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) are tested and finally corrected using a probability matching method. The corrected products are then used as forcing to the coupled model over the 2003–10 period. The predicted number and size of ponds and their dynamics are greatly improved compared to the model forced only by a single gauge. A more realistic spatiotemporal distribution of the host bite rate of the RVF vectors is thus expected.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-13-0134.1</identifier><language>eng</language><publisher>American Meteorological Society</publisher><subject>Bites and stings ; Hydrological modeling ; Hydrometeorology ; Modeling ; Ponds ; Precipitation ; Radar ; Rain ; Rain gauges ; Spatial models</subject><ispartof>Journal of hydrometeorology, 2014-08, Vol.15 (4), p.1624-1635</ispartof><rights>2014 American Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-e088054bc5f82059651cb618540795b2f33646fd6007b6bd5f232c910a4ad6e33</citedby><cites>FETCH-LOGICAL-c267t-e088054bc5f82059651cb618540795b2f33646fd6007b6bd5f232c910a4ad6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24914534$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24914534$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Guilloteau, Clement</creatorcontrib><creatorcontrib>Gosset, Marielle</creatorcontrib><creatorcontrib>Vignolles, Cecile</creatorcontrib><creatorcontrib>Alcoba, Matias</creatorcontrib><creatorcontrib>Tourre, Yves M.</creatorcontrib><creatorcontrib>Lacaux, Jean-Pierre</creatorcontrib><title>Impacts of Satellite-Based Rainfall Products on Predicting Spatial Patterns of Rift Valley Fever Vectors</title><title>Journal of hydrometeorology</title><description>Spatiotemporal rainfall variability is a key parameter controlling the dynamics of mosquitoes/vector-borne diseases such as malaria, Rift Valley fever (RVF), or dengue. Impacts from rainfall heterogeneity at small scales (i.e., 1–10 km) on the risk of epidemics (i.e., host bite rate or number of bites per host and per night) must be thoroughly evaluated. A model with hydrological and entomological components for risk prediction of the RVF zoonosis is proposed. The model predicts the production of two mosquito species within a 45 km × 45 km area in the Ferlo region, Senegal. The three necessary steps include 1) best rainfall estimation on a small scale, 2) adequate forcing of a simple hydrological model leading to pond dynamics (ponds are the primary larvae breeding grounds), and 3) best estimate of mosquito life cycles obtained from the coupled entomological model. The sensitivity of the model to the spatiotemporal heterogeneity of rainfall is first tested using high-resolution rain fields from a weather radar. The need for high-resolution rain data is thus demonstrated. Several high-resolution satellite rainfall products are evaluated in the region of interest using a dense rain gauge network. Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42, version 6 (TMPA-3B42V6), and 3B42 in real time (TMPA-3B42RT); Global Satellite Mapping of Precipitation (GSMaP) in near–real time (GSMaP-NRT) and Moving Vector with Kalman version (GSMa-PMVK); African Rainfall Estimation Algorithm, version 2.0 (RFE 2.0); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) are tested and finally corrected using a probability matching method. The corrected products are then used as forcing to the coupled model over the 2003–10 period. The predicted number and size of ponds and their dynamics are greatly improved compared to the model forced only by a single gauge. A more realistic spatiotemporal distribution of the host bite rate of the RVF vectors is thus expected.</description><subject>Bites and stings</subject><subject>Hydrological modeling</subject><subject>Hydrometeorology</subject><subject>Modeling</subject><subject>Ponds</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Spatial models</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PwjAcxRujiYiePZns6GXQ7_pj21FRBIPRgBJvTdd1WjK22RYT_nsLGE7fl3w_7yXvIXQNeACQsuHz5CV-iIHEGAgdwAnqAUtYnDIKp0fNPs_RhXMrjDHNIeuh7-m6k8q7qK2ihfS6ro3X8b10uozm0jSVrOvozbblZg81QevSKG-ar2jRSW9keEvvtW32GXNT-WgZTHobjfWvttFSK99ad4nOQpbTV_-3jz7Gj--jSTx7fZqO7maxSnjqY42zDDNaKFZlCWY5Z6AKDhmjOM1ZkVSEcMqrkmOcFrwoWZWQROWAJZUl14T00e0ht7Ptz0Y7L9bGqdBLNrrdOAGMYwDOGQ7o8IAq2zpndSU6a9bSbgVgsdtUhE3FgwAidpuG20c3B8fKhU5HPAlbUkYo-QMMl3Mj</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Guilloteau, Clement</creator><creator>Gosset, Marielle</creator><creator>Vignolles, Cecile</creator><creator>Alcoba, Matias</creator><creator>Tourre, Yves M.</creator><creator>Lacaux, Jean-Pierre</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7T2</scope><scope>7TG</scope><scope>7U1</scope><scope>7U2</scope><scope>7U9</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20140801</creationdate><title>Impacts of Satellite-Based Rainfall Products on Predicting Spatial Patterns of Rift Valley Fever Vectors</title><author>Guilloteau, Clement ; Gosset, Marielle ; Vignolles, Cecile ; Alcoba, Matias ; Tourre, Yves M. ; Lacaux, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-e088054bc5f82059651cb618540795b2f33646fd6007b6bd5f232c910a4ad6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bites and stings</topic><topic>Hydrological modeling</topic><topic>Hydrometeorology</topic><topic>Modeling</topic><topic>Ponds</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Spatial models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guilloteau, Clement</creatorcontrib><creatorcontrib>Gosset, Marielle</creatorcontrib><creatorcontrib>Vignolles, Cecile</creatorcontrib><creatorcontrib>Alcoba, Matias</creatorcontrib><creatorcontrib>Tourre, Yves M.</creatorcontrib><creatorcontrib>Lacaux, Jean-Pierre</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guilloteau, Clement</au><au>Gosset, Marielle</au><au>Vignolles, Cecile</au><au>Alcoba, Matias</au><au>Tourre, Yves M.</au><au>Lacaux, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Satellite-Based Rainfall Products on Predicting Spatial Patterns of Rift Valley Fever Vectors</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>15</volume><issue>4</issue><spage>1624</spage><epage>1635</epage><pages>1624-1635</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Spatiotemporal rainfall variability is a key parameter controlling the dynamics of mosquitoes/vector-borne diseases such as malaria, Rift Valley fever (RVF), or dengue. Impacts from rainfall heterogeneity at small scales (i.e., 1–10 km) on the risk of epidemics (i.e., host bite rate or number of bites per host and per night) must be thoroughly evaluated. A model with hydrological and entomological components for risk prediction of the RVF zoonosis is proposed. The model predicts the production of two mosquito species within a 45 km × 45 km area in the Ferlo region, Senegal. The three necessary steps include 1) best rainfall estimation on a small scale, 2) adequate forcing of a simple hydrological model leading to pond dynamics (ponds are the primary larvae breeding grounds), and 3) best estimate of mosquito life cycles obtained from the coupled entomological model. The sensitivity of the model to the spatiotemporal heterogeneity of rainfall is first tested using high-resolution rain fields from a weather radar. The need for high-resolution rain data is thus demonstrated. Several high-resolution satellite rainfall products are evaluated in the region of interest using a dense rain gauge network. Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42, version 6 (TMPA-3B42V6), and 3B42 in real time (TMPA-3B42RT); Global Satellite Mapping of Precipitation (GSMaP) in near–real time (GSMaP-NRT) and Moving Vector with Kalman version (GSMa-PMVK); African Rainfall Estimation Algorithm, version 2.0 (RFE 2.0); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) are tested and finally corrected using a probability matching method. The corrected products are then used as forcing to the coupled model over the 2003–10 period. The predicted number and size of ponds and their dynamics are greatly improved compared to the model forced only by a single gauge. A more realistic spatiotemporal distribution of the host bite rate of the RVF vectors is thus expected.</abstract><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-13-0134.1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2014-08, Vol.15 (4), p.1624-1635 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560116650 |
source | Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Bites and stings Hydrological modeling Hydrometeorology Modeling Ponds Precipitation Radar Rain Rain gauges Spatial models |
title | Impacts of Satellite-Based Rainfall Products on Predicting Spatial Patterns of Rift Valley Fever Vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Satellite-Based%20Rainfall%20Products%20on%20Predicting%20Spatial%20Patterns%20of%20Rift%20Valley%20Fever%20Vectors&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Guilloteau,%20Clement&rft.date=2014-08-01&rft.volume=15&rft.issue=4&rft.spage=1624&rft.epage=1635&rft.pages=1624-1635&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-13-0134.1&rft_dat=%3Cjstor_proqu%3E24914534%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560116650&rft_id=info:pmid/&rft_jstor_id=24914534&rfr_iscdi=true |