Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns
Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends,...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2014-08, Vol.44 (8), p.2139-2152 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2152 |
---|---|
container_issue | 8 |
container_start_page | 2139 |
container_title | Journal of physical oceanography |
container_volume | 44 |
creator | ESPEJO, Antonio CAMUS, Paula LOSADA, Iñigo J MENDEZ, Fernando J |
description | Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections. |
doi_str_mv | 10.1175/jpo-d-13-0276.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560114962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560114962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-f255f6c48395abf5f6a378a546ee6d65b27b4782b44a81eb83ef45b8568563703</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKtrtwMiuJk278wsa31TaMXXMtxJM5gynRmTVOi_N8XiQrhwLpfvHg4HoXOCR4QoMV71Xb7MCcsxVXJEDtCACIpzzAtxiAYYU5ozqfAxOglhhTGWhJYD9PzSWxM9NNncWGizD_i22bRxa4g2ewfvoHKNi9vsGoJdZl2bTeK6C_2n9c5kU-fNpoHo0n0BMVrfhlN0VEMT7Nleh-jt7vZ1-pDP5veP08ksN5yVMa-pELU0vGClgKpOOzBVgODSWrmUoqKq4qqgFedQEFsVzNZcVIWQaZjCbIiufn17331tbIh67YKxTQOt7TZBEyExIbyUNKEX_9BVt_FtSpcowQgXnJaJGv9SxncheFvr3qce_FYTrHcV66fFXN9owvSu4qRDdLn3hWCgqT20xoW_N1oorpgg7AdjSHrS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553145429</pqid></control><display><type>article</type><title>Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ESPEJO, Antonio ; CAMUS, Paula ; LOSADA, Iñigo J ; MENDEZ, Fernando J</creator><creatorcontrib>ESPEJO, Antonio ; CAMUS, Paula ; LOSADA, Iñigo J ; MENDEZ, Fernando J</creatorcontrib><description>Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/jpo-d-13-0276.1</identifier><identifier>CODEN: JPYOBT</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospheric circulation ; Climate change ; Climate system ; Climate variability ; Earth, ocean, space ; Energy industry ; Exact sciences and technology ; External geophysics ; Marine ; Meteorology ; Ocean waves ; Physics of the oceans ; Principal components analysis ; Statistical methods ; Surface waves, tides and sea level. Seiches ; Time series ; Wave direction ; Wave energy ; Wave height</subject><ispartof>Journal of physical oceanography, 2014-08, Vol.44 (8), p.2139-2152</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Aug 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-f255f6c48395abf5f6a378a546ee6d65b27b4782b44a81eb83ef45b8568563703</citedby><cites>FETCH-LOGICAL-c439t-f255f6c48395abf5f6a378a546ee6d65b27b4782b44a81eb83ef45b8568563703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28747351$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ESPEJO, Antonio</creatorcontrib><creatorcontrib>CAMUS, Paula</creatorcontrib><creatorcontrib>LOSADA, Iñigo J</creatorcontrib><creatorcontrib>MENDEZ, Fernando J</creatorcontrib><title>Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns</title><title>Journal of physical oceanography</title><description>Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.</description><subject>Atmospheric circulation</subject><subject>Climate change</subject><subject>Climate system</subject><subject>Climate variability</subject><subject>Earth, ocean, space</subject><subject>Energy industry</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean waves</subject><subject>Physics of the oceans</subject><subject>Principal components analysis</subject><subject>Statistical methods</subject><subject>Surface waves, tides and sea level. Seiches</subject><subject>Time series</subject><subject>Wave direction</subject><subject>Wave energy</subject><subject>Wave height</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLAzEUhYMoWKtrtwMiuJk278wsa31TaMXXMtxJM5gynRmTVOi_N8XiQrhwLpfvHg4HoXOCR4QoMV71Xb7MCcsxVXJEDtCACIpzzAtxiAYYU5ozqfAxOglhhTGWhJYD9PzSWxM9NNncWGizD_i22bRxa4g2ewfvoHKNi9vsGoJdZl2bTeK6C_2n9c5kU-fNpoHo0n0BMVrfhlN0VEMT7Nleh-jt7vZ1-pDP5veP08ksN5yVMa-pELU0vGClgKpOOzBVgODSWrmUoqKq4qqgFedQEFsVzNZcVIWQaZjCbIiufn17331tbIh67YKxTQOt7TZBEyExIbyUNKEX_9BVt_FtSpcowQgXnJaJGv9SxncheFvr3qce_FYTrHcV66fFXN9owvSu4qRDdLn3hWCgqT20xoW_N1oorpgg7AdjSHrS</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>ESPEJO, Antonio</creator><creator>CAMUS, Paula</creator><creator>LOSADA, Iñigo J</creator><creator>MENDEZ, Fernando J</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20140801</creationdate><title>Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns</title><author>ESPEJO, Antonio ; CAMUS, Paula ; LOSADA, Iñigo J ; MENDEZ, Fernando J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-f255f6c48395abf5f6a378a546ee6d65b27b4782b44a81eb83ef45b8568563703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospheric circulation</topic><topic>Climate change</topic><topic>Climate system</topic><topic>Climate variability</topic><topic>Earth, ocean, space</topic><topic>Energy industry</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean waves</topic><topic>Physics of the oceans</topic><topic>Principal components analysis</topic><topic>Statistical methods</topic><topic>Surface waves, tides and sea level. Seiches</topic><topic>Time series</topic><topic>Wave direction</topic><topic>Wave energy</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ESPEJO, Antonio</creatorcontrib><creatorcontrib>CAMUS, Paula</creatorcontrib><creatorcontrib>LOSADA, Iñigo J</creatorcontrib><creatorcontrib>MENDEZ, Fernando J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ESPEJO, Antonio</au><au>CAMUS, Paula</au><au>LOSADA, Iñigo J</au><au>MENDEZ, Fernando J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns</atitle><jtitle>Journal of physical oceanography</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>44</volume><issue>8</issue><spage>2139</spage><epage>2152</epage><pages>2139-2152</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><coden>JPYOBT</coden><abstract>Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jpo-d-13-0276.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2014-08, Vol.44 (8), p.2139-2152 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560114962 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atmospheric circulation Climate change Climate system Climate variability Earth, ocean, space Energy industry Exact sciences and technology External geophysics Marine Meteorology Ocean waves Physics of the oceans Principal components analysis Statistical methods Surface waves, tides and sea level. Seiches Time series Wave direction Wave energy Wave height |
title | Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Ocean%20Wave%20Climate%20Variability%20Based%20on%20Atmospheric%20Circulation%20Patterns&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=ESPEJO,%20Antonio&rft.date=2014-08-01&rft.volume=44&rft.issue=8&rft.spage=2139&rft.epage=2152&rft.pages=2139-2152&rft.issn=0022-3670&rft.eissn=1520-0485&rft.coden=JPYOBT&rft_id=info:doi/10.1175/jpo-d-13-0276.1&rft_dat=%3Cproquest_cross%3E1560114962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553145429&rft_id=info:pmid/&rfr_iscdi=true |