Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)

Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular breeding 2014-02, Vol.33 (2), p.297-313
Hauptverfasser: Stephens, Amber, Lombardi, Maria, Cogan, Noel O. I, Forster, John W, Hobson, Kristy, Materne, Michael, Kaur, Sukhjiwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 2
container_start_page 297
container_title Molecular breeding
container_volume 33
creator Stephens, Amber
Lombardi, Maria
Cogan, Noel O. I
Forster, John W
Hobson, Kristy
Materne, Michael
Kaur, Sukhjiwan
description Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivated species, suitable for pyramiding to improve field performance. Robust and closely linked genetic markers are desirable to facilitate this approach. A total of 4,654 simple sequence repeat (SSR) and 1,430 single nucleotide polymorphism (SNP) markers were identified from a chickpea expressed sequence tag (EST) database. Subsets of 143 EST–SSRs and 768 SNPs were further used for validation and subsequent high-density genetic mapping of two intraspecific mapping populations (Lasseter × ICC3996 and S95362 × Howzat). Comparison of the linkage maps to the genome of Medicago truncatula revealed a high degree of conserved macrosynteny. Based on field evaluation of ascochyta blight incidence performed over 2 years, two genomic regions containing resistance determinants were identified in the Lasseter × ICC3996 family. In the S95362 × Howzat population, only one quantitative trait locus (QTL) region was identified for both phenotypic evaluation trials, which on the basis of bridging markers was deduced to coincide with one of the Lasseter × ICC3996 QTLs. Of the two QTL-containing regions identified in this study, one (ab_QTL1) was predicted to be in common with QTLs identified in prior studies, while the other (ab_QTL2) may be novel. Markers in close linkage to ascochyta blight resistance genes that have been identified in this study can be further validated and effectively implemented in chickpea breeding programs.
doi_str_mv 10.1007/s11032-013-9950-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560105801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560105801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-e5e1efcce8b5b2b519ae6602603d3561e57ce6edcf79e51207c7a1b2250af8e73</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhU1oIem0D9BVBd2kUCf6sWRrWYY0KQx00WQtZM31jDIeyZHkwLxQn7M3uFDoIisJ7vmOrs6pqo-MXjFK2-vMGBW8pkzUWkta67PqgsmW17rtujd4Fx2tRduI8-pdzo8UGa3URfX7FgIU78jRpgMksvXZxWdIp6_Eh5JsnsD5AeejDwe7A9RNxMWQS5pd8TEQG7bkabah-GKLfwaClC9kjG7OOLTjKftM4kAsOrv9qVjSj363LyQBTooNDvAt4vbeHSaw5HLtHW5ik8fFwnwkm6sv76u3gx0zfPh7rqqH7zf367t68_P2x_rbpnaN0KUGCQwG56DrZc97ybQFpShXVGyFVAxk60DB1g2tBsk4bV1rWc-5pHbooBWr6nLxnVJ8miEXc8RAYBxtgDhnw6SijMoOc15Vn_-TPsY54X-zQT_dMKoERRVbVC7FnBMMZkoesz4ZRs1Lc2ZpzqCjeWnOaGT4wmTUhh2kf86vQZ8WaLDR2F3y2Tz84pQ1WLXqKG_EH_RpqC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259410630</pqid></control><display><type>article</type><title>Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stephens, Amber ; Lombardi, Maria ; Cogan, Noel O. I ; Forster, John W ; Hobson, Kristy ; Materne, Michael ; Kaur, Sukhjiwan</creator><creatorcontrib>Stephens, Amber ; Lombardi, Maria ; Cogan, Noel O. I ; Forster, John W ; Hobson, Kristy ; Materne, Michael ; Kaur, Sukhjiwan</creatorcontrib><description>Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivated species, suitable for pyramiding to improve field performance. Robust and closely linked genetic markers are desirable to facilitate this approach. A total of 4,654 simple sequence repeat (SSR) and 1,430 single nucleotide polymorphism (SNP) markers were identified from a chickpea expressed sequence tag (EST) database. Subsets of 143 EST–SSRs and 768 SNPs were further used for validation and subsequent high-density genetic mapping of two intraspecific mapping populations (Lasseter × ICC3996 and S95362 × Howzat). Comparison of the linkage maps to the genome of Medicago truncatula revealed a high degree of conserved macrosynteny. Based on field evaluation of ascochyta blight incidence performed over 2 years, two genomic regions containing resistance determinants were identified in the Lasseter × ICC3996 family. In the S95362 × Howzat population, only one quantitative trait locus (QTL) region was identified for both phenotypic evaluation trials, which on the basis of bridging markers was deduced to coincide with one of the Lasseter × ICC3996 QTLs. Of the two QTL-containing regions identified in this study, one (ab_QTL1) was predicted to be in common with QTLs identified in prior studies, while the other (ab_QTL2) may be novel. Markers in close linkage to ascochyta blight resistance genes that have been identified in this study can be further validated and effectively implemented in chickpea breeding programs.</description><identifier>ISSN: 1380-3743</identifier><identifier>EISSN: 1572-9788</identifier><identifier>DOI: 10.1007/s11032-013-9950-9</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Alfalfa ; Ascochyta ; Ascochyta rabiei ; Biomedical and Life Sciences ; Biotechnology ; Blight ; breeding ; Chickpeas ; chromosome mapping ; Cicer arietinum ; Expressed sequence tags ; Fungi ; Gene mapping ; genes ; Genetic markers ; Legumes ; Life Sciences ; Mapping ; Markers ; Medicago truncatula ; microsatellite repeats ; Molecular biology ; Nucleotides ; Pathogenicity ; Pathogens ; Plant biology ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Polymorphism ; Quantitative trait loci ; Single-nucleotide polymorphism</subject><ispartof>Molecular breeding, 2014-02, Vol.33 (2), p.297-313</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Molecular Breeding is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-e5e1efcce8b5b2b519ae6602603d3561e57ce6edcf79e51207c7a1b2250af8e73</citedby><cites>FETCH-LOGICAL-c439t-e5e1efcce8b5b2b519ae6602603d3561e57ce6edcf79e51207c7a1b2250af8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11032-013-9950-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11032-013-9950-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Stephens, Amber</creatorcontrib><creatorcontrib>Lombardi, Maria</creatorcontrib><creatorcontrib>Cogan, Noel O. I</creatorcontrib><creatorcontrib>Forster, John W</creatorcontrib><creatorcontrib>Hobson, Kristy</creatorcontrib><creatorcontrib>Materne, Michael</creatorcontrib><creatorcontrib>Kaur, Sukhjiwan</creatorcontrib><title>Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)</title><title>Molecular breeding</title><addtitle>Mol Breeding</addtitle><description>Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivated species, suitable for pyramiding to improve field performance. Robust and closely linked genetic markers are desirable to facilitate this approach. A total of 4,654 simple sequence repeat (SSR) and 1,430 single nucleotide polymorphism (SNP) markers were identified from a chickpea expressed sequence tag (EST) database. Subsets of 143 EST–SSRs and 768 SNPs were further used for validation and subsequent high-density genetic mapping of two intraspecific mapping populations (Lasseter × ICC3996 and S95362 × Howzat). Comparison of the linkage maps to the genome of Medicago truncatula revealed a high degree of conserved macrosynteny. Based on field evaluation of ascochyta blight incidence performed over 2 years, two genomic regions containing resistance determinants were identified in the Lasseter × ICC3996 family. In the S95362 × Howzat population, only one quantitative trait locus (QTL) region was identified for both phenotypic evaluation trials, which on the basis of bridging markers was deduced to coincide with one of the Lasseter × ICC3996 QTLs. Of the two QTL-containing regions identified in this study, one (ab_QTL1) was predicted to be in common with QTLs identified in prior studies, while the other (ab_QTL2) may be novel. Markers in close linkage to ascochyta blight resistance genes that have been identified in this study can be further validated and effectively implemented in chickpea breeding programs.</description><subject>Alfalfa</subject><subject>Ascochyta</subject><subject>Ascochyta rabiei</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Blight</subject><subject>breeding</subject><subject>Chickpeas</subject><subject>chromosome mapping</subject><subject>Cicer arietinum</subject><subject>Expressed sequence tags</subject><subject>Fungi</subject><subject>Gene mapping</subject><subject>genes</subject><subject>Genetic markers</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Mapping</subject><subject>Markers</subject><subject>Medicago truncatula</subject><subject>microsatellite repeats</subject><subject>Molecular biology</subject><subject>Nucleotides</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Plant biology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Polymorphism</subject><subject>Quantitative trait loci</subject><subject>Single-nucleotide polymorphism</subject><issn>1380-3743</issn><issn>1572-9788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1q3DAUhU1oIem0D9BVBd2kUCf6sWRrWYY0KQx00WQtZM31jDIeyZHkwLxQn7M3uFDoIisJ7vmOrs6pqo-MXjFK2-vMGBW8pkzUWkta67PqgsmW17rtujd4Fx2tRduI8-pdzo8UGa3URfX7FgIU78jRpgMksvXZxWdIp6_Eh5JsnsD5AeejDwe7A9RNxMWQS5pd8TEQG7bkabah-GKLfwaClC9kjG7OOLTjKftM4kAsOrv9qVjSj363LyQBTooNDvAt4vbeHSaw5HLtHW5ik8fFwnwkm6sv76u3gx0zfPh7rqqH7zf367t68_P2x_rbpnaN0KUGCQwG56DrZc97ybQFpShXVGyFVAxk60DB1g2tBsk4bV1rWc-5pHbooBWr6nLxnVJ8miEXc8RAYBxtgDhnw6SijMoOc15Vn_-TPsY54X-zQT_dMKoERRVbVC7FnBMMZkoesz4ZRs1Lc2ZpzqCjeWnOaGT4wmTUhh2kf86vQZ8WaLDR2F3y2Tz84pQ1WLXqKG_EH_RpqC8</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Stephens, Amber</creator><creator>Lombardi, Maria</creator><creator>Cogan, Noel O. I</creator><creator>Forster, John W</creator><creator>Hobson, Kristy</creator><creator>Materne, Michael</creator><creator>Kaur, Sukhjiwan</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20140201</creationdate><title>Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)</title><author>Stephens, Amber ; Lombardi, Maria ; Cogan, Noel O. I ; Forster, John W ; Hobson, Kristy ; Materne, Michael ; Kaur, Sukhjiwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-e5e1efcce8b5b2b519ae6602603d3561e57ce6edcf79e51207c7a1b2250af8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alfalfa</topic><topic>Ascochyta</topic><topic>Ascochyta rabiei</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Blight</topic><topic>breeding</topic><topic>Chickpeas</topic><topic>chromosome mapping</topic><topic>Cicer arietinum</topic><topic>Expressed sequence tags</topic><topic>Fungi</topic><topic>Gene mapping</topic><topic>genes</topic><topic>Genetic markers</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Mapping</topic><topic>Markers</topic><topic>Medicago truncatula</topic><topic>microsatellite repeats</topic><topic>Molecular biology</topic><topic>Nucleotides</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Plant biology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Polymorphism</topic><topic>Quantitative trait loci</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephens, Amber</creatorcontrib><creatorcontrib>Lombardi, Maria</creatorcontrib><creatorcontrib>Cogan, Noel O. I</creatorcontrib><creatorcontrib>Forster, John W</creatorcontrib><creatorcontrib>Hobson, Kristy</creatorcontrib><creatorcontrib>Materne, Michael</creatorcontrib><creatorcontrib>Kaur, Sukhjiwan</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephens, Amber</au><au>Lombardi, Maria</au><au>Cogan, Noel O. I</au><au>Forster, John W</au><au>Hobson, Kristy</au><au>Materne, Michael</au><au>Kaur, Sukhjiwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)</atitle><jtitle>Molecular breeding</jtitle><stitle>Mol Breeding</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>33</volume><issue>2</issue><spage>297</spage><epage>313</epage><pages>297-313</pages><issn>1380-3743</issn><eissn>1572-9788</eissn><abstract>Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Labr., is a highly destructive disease of chickpea (Cicer arietinum L.) on a global basis, and exhibits considerable natural variation for pathogenicity. Different sources of ascochyta blight resistance are available within the cultivated species, suitable for pyramiding to improve field performance. Robust and closely linked genetic markers are desirable to facilitate this approach. A total of 4,654 simple sequence repeat (SSR) and 1,430 single nucleotide polymorphism (SNP) markers were identified from a chickpea expressed sequence tag (EST) database. Subsets of 143 EST–SSRs and 768 SNPs were further used for validation and subsequent high-density genetic mapping of two intraspecific mapping populations (Lasseter × ICC3996 and S95362 × Howzat). Comparison of the linkage maps to the genome of Medicago truncatula revealed a high degree of conserved macrosynteny. Based on field evaluation of ascochyta blight incidence performed over 2 years, two genomic regions containing resistance determinants were identified in the Lasseter × ICC3996 family. In the S95362 × Howzat population, only one quantitative trait locus (QTL) region was identified for both phenotypic evaluation trials, which on the basis of bridging markers was deduced to coincide with one of the Lasseter × ICC3996 QTLs. Of the two QTL-containing regions identified in this study, one (ab_QTL1) was predicted to be in common with QTLs identified in prior studies, while the other (ab_QTL2) may be novel. Markers in close linkage to ascochyta blight resistance genes that have been identified in this study can be further validated and effectively implemented in chickpea breeding programs.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11032-013-9950-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-3743
ispartof Molecular breeding, 2014-02, Vol.33 (2), p.297-313
issn 1380-3743
1572-9788
language eng
recordid cdi_proquest_miscellaneous_1560105801
source SpringerLink Journals - AutoHoldings
subjects Alfalfa
Ascochyta
Ascochyta rabiei
Biomedical and Life Sciences
Biotechnology
Blight
breeding
Chickpeas
chromosome mapping
Cicer arietinum
Expressed sequence tags
Fungi
Gene mapping
genes
Genetic markers
Legumes
Life Sciences
Mapping
Markers
Medicago truncatula
microsatellite repeats
Molecular biology
Nucleotides
Pathogenicity
Pathogens
Plant biology
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
Polymorphism
Quantitative trait loci
Single-nucleotide polymorphism
title Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20marker%20discovery,%20intraspecific%20linkage%20map%20construction%20and%20quantitative%20trait%20locus%20analysis%20of%20ascochyta%20blight%20resistance%20in%20chickpea%20(Cicer%20arietinum%20L.)&rft.jtitle=Molecular%20breeding&rft.au=Stephens,%20Amber&rft.date=2014-02-01&rft.volume=33&rft.issue=2&rft.spage=297&rft.epage=313&rft.pages=297-313&rft.issn=1380-3743&rft.eissn=1572-9788&rft_id=info:doi/10.1007/s11032-013-9950-9&rft_dat=%3Cproquest_cross%3E1560105801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259410630&rft_id=info:pmid/&rfr_iscdi=true