Oxidative stress response in Pseudomonas putida

Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2014-08, Vol.98 (16), p.6933-6946
Hauptverfasser: Kim, Jisun, Park, Woojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6946
container_issue 16
container_start_page 6933
container_title Applied microbiology and biotechnology
container_volume 98
creator Kim, Jisun
Park, Woojun
description Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.
doi_str_mv 10.1007/s00253-014-5883-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560105796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385069730</galeid><sourcerecordid>A385069730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-144d5f6f2050fe41bf6ac1d7d77dc6b1962eca95f7739129079ec937ce9c44363</originalsourceid><addsrcrecordid>eNqN0l1r1EAUBuBBFLtWf4A3GvBGL9Ke-c5cluJHoVCx9nqYncwsUzaZdU4i9d87S-rHiogEEpg874GTN4Q8p3BCAfQpAjDJW6CilV3HW_GArKjgrAVFxUOyAqplq6XpjsgTxFsAyjqlHpMjJozUTNIVOb26S72b0tfQ4FQCYlNvuzxiaNLYfMQw93nIo8NmN09VPiWPottieHb_PCY3795-Pv_QXl69vzg_u2y94npqqRC9jCoykBCDoOuonKe97rXuvVpTo1jwzsioNTeUGdAmeMO1D8YLwRU_Jq-XubuSv8wBJzsk9GG7dWPIM1oqFVCQ2vwPlZSz-hlopa_-oLd5LmNdZK9ACWak-aU2bhtsGmOeivP7ofaMd5UZzaGqk7-oevVhSD6PIaZ6fhB4cxCoZgp308bNiPbi-tOhpYv1JSOWEO2upMGVb5aC3Xdvl-5t7d7uu7eiZl7cLzevh9D_TPwouwK2AKyvxk0ov23_j6kvl1B02bpNSWhvrlkF9W9SWgDj3wGAvb1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550642959</pqid></control><display><type>article</type><title>Oxidative stress response in Pseudomonas putida</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kim, Jisun ; Park, Woojun</creator><creatorcontrib>Kim, Jisun ; Park, Woojun</creatorcontrib><description>Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-5883-4</identifier><identifier>PMID: 24957251</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aerobic bacteria ; Analysis ; Antibiotics ; Bacteria ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology ; cell viability ; defense mechanisms ; Detoxification ; E coli ; Enzymes ; Escherichia coli ; evolution ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Genetics ; Genomes ; Homeostasis ; Hydrogen peroxide ; Life Sciences ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; niches ; Organic compounds ; Oxidants - toxicity ; Oxidation ; Oxidative Stress ; Physiological aspects ; Physiology ; Pollutants ; Proteins ; Pseudomonas putida ; Pseudomonas putida - drug effects ; Pseudomonas putida - physiology ; reactive oxygen species ; regulon ; Salmonella ; soil bacteria ; stress response ; Stress, Physiological ; Studies ; transcription (genetics)</subject><ispartof>Applied microbiology and biotechnology, 2014-08, Vol.98 (16), p.6933-6946</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-144d5f6f2050fe41bf6ac1d7d77dc6b1962eca95f7739129079ec937ce9c44363</citedby><cites>FETCH-LOGICAL-c637t-144d5f6f2050fe41bf6ac1d7d77dc6b1962eca95f7739129079ec937ce9c44363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-014-5883-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-014-5883-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24957251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jisun</creatorcontrib><creatorcontrib>Park, Woojun</creatorcontrib><title>Oxidative stress response in Pseudomonas putida</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.</description><subject>Aerobic bacteria</subject><subject>Analysis</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>cell viability</subject><subject>defense mechanisms</subject><subject>Detoxification</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>evolution</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Regulatory Networks</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>niches</subject><subject>Organic compounds</subject><subject>Oxidants - toxicity</subject><subject>Oxidation</subject><subject>Oxidative Stress</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Pollutants</subject><subject>Proteins</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - drug effects</subject><subject>Pseudomonas putida - physiology</subject><subject>reactive oxygen species</subject><subject>regulon</subject><subject>Salmonella</subject><subject>soil bacteria</subject><subject>stress response</subject><subject>Stress, Physiological</subject><subject>Studies</subject><subject>transcription (genetics)</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0l1r1EAUBuBBFLtWf4A3GvBGL9Ke-c5cluJHoVCx9nqYncwsUzaZdU4i9d87S-rHiogEEpg874GTN4Q8p3BCAfQpAjDJW6CilV3HW_GArKjgrAVFxUOyAqplq6XpjsgTxFsAyjqlHpMjJozUTNIVOb26S72b0tfQ4FQCYlNvuzxiaNLYfMQw93nIo8NmN09VPiWPottieHb_PCY3795-Pv_QXl69vzg_u2y94npqqRC9jCoykBCDoOuonKe97rXuvVpTo1jwzsioNTeUGdAmeMO1D8YLwRU_Jq-XubuSv8wBJzsk9GG7dWPIM1oqFVCQ2vwPlZSz-hlopa_-oLd5LmNdZK9ACWak-aU2bhtsGmOeivP7ofaMd5UZzaGqk7-oevVhSD6PIaZ6fhB4cxCoZgp308bNiPbi-tOhpYv1JSOWEO2upMGVb5aC3Xdvl-5t7d7uu7eiZl7cLzevh9D_TPwouwK2AKyvxk0ov23_j6kvl1B02bpNSWhvrlkF9W9SWgDj3wGAvb1q</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kim, Jisun</creator><creator>Park, Woojun</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140801</creationdate><title>Oxidative stress response in Pseudomonas putida</title><author>Kim, Jisun ; Park, Woojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-144d5f6f2050fe41bf6ac1d7d77dc6b1962eca95f7739129079ec937ce9c44363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerobic bacteria</topic><topic>Analysis</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>cell viability</topic><topic>defense mechanisms</topic><topic>Detoxification</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>evolution</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Regulatory Networks</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>niches</topic><topic>Organic compounds</topic><topic>Oxidants - toxicity</topic><topic>Oxidation</topic><topic>Oxidative Stress</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Pollutants</topic><topic>Proteins</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - drug effects</topic><topic>Pseudomonas putida - physiology</topic><topic>reactive oxygen species</topic><topic>regulon</topic><topic>Salmonella</topic><topic>soil bacteria</topic><topic>stress response</topic><topic>Stress, Physiological</topic><topic>Studies</topic><topic>transcription (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jisun</creatorcontrib><creatorcontrib>Park, Woojun</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jisun</au><au>Park, Woojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress response in Pseudomonas putida</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>98</volume><issue>16</issue><spage>6933</spage><epage>6946</epage><pages>6933-6946</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24957251</pmid><doi>10.1007/s00253-014-5883-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2014-08, Vol.98 (16), p.6933-6946
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1560105796
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aerobic bacteria
Analysis
Antibiotics
Bacteria
Biomedical and Life Sciences
Bioremediation
Biotechnology
cell viability
defense mechanisms
Detoxification
E coli
Enzymes
Escherichia coli
evolution
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genetics
Genomes
Homeostasis
Hydrogen peroxide
Life Sciences
Metabolism
Microbial Genetics and Genomics
Microbiology
Mini-Review
niches
Organic compounds
Oxidants - toxicity
Oxidation
Oxidative Stress
Physiological aspects
Physiology
Pollutants
Proteins
Pseudomonas putida
Pseudomonas putida - drug effects
Pseudomonas putida - physiology
reactive oxygen species
regulon
Salmonella
soil bacteria
stress response
Stress, Physiological
Studies
transcription (genetics)
title Oxidative stress response in Pseudomonas putida
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20response%20in%20Pseudomonas%20putida&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kim,%20Jisun&rft.date=2014-08-01&rft.volume=98&rft.issue=16&rft.spage=6933&rft.epage=6946&rft.pages=6933-6946&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-5883-4&rft_dat=%3Cgale_proqu%3EA385069730%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550642959&rft_id=info:pmid/24957251&rft_galeid=A385069730&rfr_iscdi=true