Near-field interferometry of a free-falling nanoparticle from a point-like source
Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-09, Vol.5 (1), p.4788-4788, Article 4788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4788 |
---|---|
container_issue | 1 |
container_start_page | 4788 |
container_title | Nature communications |
container_volume | 5 |
creator | Bateman, James Nimmrichter, Stefan Hornberger, Klaus Ulbricht, Hendrik |
description | Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman
et al
. propose a near-field interference scheme based on the single-source Talbot effect for 10
6
amu silicon particles. |
doi_str_mv | 10.1038/ncomms5788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560099917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3419462771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiruse_EHSMGLKNVM04_kKItfIIqg55Imk6Vr29SkPey_N7KrLppLAvPkzWQIOQZ6CZTxq07ZtvVZwfkemSY0hRiKhO3vnCdk7v2KhsUE8DQ9JJMkg0JkOZ2SlyeULjY1NjqquwGdQWdbHNw6siaSkXGIsZFNU3fLqJOd7aUbatVgqNg2gN6Ga3FTv2Pk7egUHpGD4D3Ot_uMvN3evC7u48fnu4fF9WOs0owNcSoTZoTOMMdcGaY1FDKhIBAkS1AXoCUHlUqASnOZ00qBElzpqoI0U5KxGTnb5PbOfozoh7KtvcKmkR3a0ZcQ_keFEFAEevqHrkKrXeguqIwXAnIhgjrfKOWs9w5N2bu6lW5dAi2_Zl3-zjrgk23kWLWof-j3ZAO42AAfSt0S3c6b_-M-Abn_idM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558791699</pqid></control><display><type>article</type><title>Near-field interferometry of a free-falling nanoparticle from a point-like source</title><source>Springer Nature OA/Free Journals</source><creator>Bateman, James ; Nimmrichter, Stefan ; Hornberger, Klaus ; Ulbricht, Hendrik</creator><creatorcontrib>Bateman, James ; Nimmrichter, Stefan ; Hornberger, Klaus ; Ulbricht, Hendrik</creatorcontrib><description>Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman
et al
. propose a near-field interference scheme based on the single-source Talbot effect for 10
6
amu silicon particles.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5788</identifier><identifier>PMID: 25179560</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/301/930/328/1650 ; 639/766/36 ; 639/766/483/640 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4788-4788, Article 4788</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</citedby><cites>FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5788$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5788$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5788$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25179560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bateman, James</creatorcontrib><creatorcontrib>Nimmrichter, Stefan</creatorcontrib><creatorcontrib>Hornberger, Klaus</creatorcontrib><creatorcontrib>Ulbricht, Hendrik</creatorcontrib><title>Near-field interferometry of a free-falling nanoparticle from a point-like source</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman
et al
. propose a near-field interference scheme based on the single-source Talbot effect for 10
6
amu silicon particles.</description><subject>639/301/357/354</subject><subject>639/301/930/328/1650</subject><subject>639/766/36</subject><subject>639/766/483/640</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0E1LxDAQBuAgiruse_EHSMGLKNVM04_kKItfIIqg55Imk6Vr29SkPey_N7KrLppLAvPkzWQIOQZ6CZTxq07ZtvVZwfkemSY0hRiKhO3vnCdk7v2KhsUE8DQ9JJMkg0JkOZ2SlyeULjY1NjqquwGdQWdbHNw6siaSkXGIsZFNU3fLqJOd7aUbatVgqNg2gN6Ga3FTv2Pk7egUHpGD4D3Ot_uMvN3evC7u48fnu4fF9WOs0owNcSoTZoTOMMdcGaY1FDKhIBAkS1AXoCUHlUqASnOZ00qBElzpqoI0U5KxGTnb5PbOfozoh7KtvcKmkR3a0ZcQ_keFEFAEevqHrkKrXeguqIwXAnIhgjrfKOWs9w5N2bu6lW5dAi2_Zl3-zjrgk23kWLWof-j3ZAO42AAfSt0S3c6b_-M-Abn_idM</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Bateman, James</creator><creator>Nimmrichter, Stefan</creator><creator>Hornberger, Klaus</creator><creator>Ulbricht, Hendrik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140902</creationdate><title>Near-field interferometry of a free-falling nanoparticle from a point-like source</title><author>Bateman, James ; Nimmrichter, Stefan ; Hornberger, Klaus ; Ulbricht, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/357/354</topic><topic>639/301/930/328/1650</topic><topic>639/766/36</topic><topic>639/766/483/640</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bateman, James</creatorcontrib><creatorcontrib>Nimmrichter, Stefan</creatorcontrib><creatorcontrib>Hornberger, Klaus</creatorcontrib><creatorcontrib>Ulbricht, Hendrik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bateman, James</au><au>Nimmrichter, Stefan</au><au>Hornberger, Klaus</au><au>Ulbricht, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-field interferometry of a free-falling nanoparticle from a point-like source</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-02</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4788</spage><epage>4788</epage><pages>4788-4788</pages><artnum>4788</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman
et al
. propose a near-field interference scheme based on the single-source Talbot effect for 10
6
amu silicon particles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25179560</pmid><doi>10.1038/ncomms5788</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-09, Vol.5 (1), p.4788-4788, Article 4788 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1560099917 |
source | Springer Nature OA/Free Journals |
subjects | 639/301/357/354 639/301/930/328/1650 639/766/36 639/766/483/640 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Near-field interferometry of a free-falling nanoparticle from a point-like source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-field%20interferometry%20of%20a%20free-falling%20nanoparticle%20from%20a%20point-like%20source&rft.jtitle=Nature%20communications&rft.au=Bateman,%20James&rft.date=2014-09-02&rft.volume=5&rft.issue=1&rft.spage=4788&rft.epage=4788&rft.pages=4788-4788&rft.artnum=4788&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5788&rft_dat=%3Cproquest_C6C%3E3419462771%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558791699&rft_id=info:pmid/25179560&rfr_iscdi=true |