Near-field interferometry of a free-falling nanoparticle from a point-like source

Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-09, Vol.5 (1), p.4788-4788, Article 4788
Hauptverfasser: Bateman, James, Nimmrichter, Stefan, Hornberger, Klaus, Ulbricht, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4788
container_issue 1
container_start_page 4788
container_title Nature communications
container_volume 5
creator Bateman, James
Nimmrichter, Stefan
Hornberger, Klaus
Ulbricht, Hendrik
description Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology. Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman et al . propose a near-field interference scheme based on the single-source Talbot effect for 10 6  amu silicon particles.
doi_str_mv 10.1038/ncomms5788
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1560099917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3419462771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiruse_EHSMGLKNVM04_kKItfIIqg55Imk6Vr29SkPey_N7KrLppLAvPkzWQIOQZ6CZTxq07ZtvVZwfkemSY0hRiKhO3vnCdk7v2KhsUE8DQ9JJMkg0JkOZ2SlyeULjY1NjqquwGdQWdbHNw6siaSkXGIsZFNU3fLqJOd7aUbatVgqNg2gN6Ga3FTv2Pk7egUHpGD4D3Ot_uMvN3evC7u48fnu4fF9WOs0owNcSoTZoTOMMdcGaY1FDKhIBAkS1AXoCUHlUqASnOZ00qBElzpqoI0U5KxGTnb5PbOfozoh7KtvcKmkR3a0ZcQ_keFEFAEevqHrkKrXeguqIwXAnIhgjrfKOWs9w5N2bu6lW5dAi2_Zl3-zjrgk23kWLWof-j3ZAO42AAfSt0S3c6b_-M-Abn_idM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558791699</pqid></control><display><type>article</type><title>Near-field interferometry of a free-falling nanoparticle from a point-like source</title><source>Springer Nature OA/Free Journals</source><creator>Bateman, James ; Nimmrichter, Stefan ; Hornberger, Klaus ; Ulbricht, Hendrik</creator><creatorcontrib>Bateman, James ; Nimmrichter, Stefan ; Hornberger, Klaus ; Ulbricht, Hendrik</creatorcontrib><description>Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over &gt;150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology. Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman et al . propose a near-field interference scheme based on the single-source Talbot effect for 10 6  amu silicon particles.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5788</identifier><identifier>PMID: 25179560</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/301/930/328/1650 ; 639/766/36 ; 639/766/483/640 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4788-4788, Article 4788</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</citedby><cites>FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5788$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5788$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5788$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25179560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bateman, James</creatorcontrib><creatorcontrib>Nimmrichter, Stefan</creatorcontrib><creatorcontrib>Hornberger, Klaus</creatorcontrib><creatorcontrib>Ulbricht, Hendrik</creatorcontrib><title>Near-field interferometry of a free-falling nanoparticle from a point-like source</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over &gt;150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology. Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman et al . propose a near-field interference scheme based on the single-source Talbot effect for 10 6  amu silicon particles.</description><subject>639/301/357/354</subject><subject>639/301/930/328/1650</subject><subject>639/766/36</subject><subject>639/766/483/640</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0E1LxDAQBuAgiruse_EHSMGLKNVM04_kKItfIIqg55Imk6Vr29SkPey_N7KrLppLAvPkzWQIOQZ6CZTxq07ZtvVZwfkemSY0hRiKhO3vnCdk7v2KhsUE8DQ9JJMkg0JkOZ2SlyeULjY1NjqquwGdQWdbHNw6siaSkXGIsZFNU3fLqJOd7aUbatVgqNg2gN6Ga3FTv2Pk7egUHpGD4D3Ot_uMvN3evC7u48fnu4fF9WOs0owNcSoTZoTOMMdcGaY1FDKhIBAkS1AXoCUHlUqASnOZ00qBElzpqoI0U5KxGTnb5PbOfozoh7KtvcKmkR3a0ZcQ_keFEFAEevqHrkKrXeguqIwXAnIhgjrfKOWs9w5N2bu6lW5dAi2_Zl3-zjrgk23kWLWof-j3ZAO42AAfSt0S3c6b_-M-Abn_idM</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Bateman, James</creator><creator>Nimmrichter, Stefan</creator><creator>Hornberger, Klaus</creator><creator>Ulbricht, Hendrik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140902</creationdate><title>Near-field interferometry of a free-falling nanoparticle from a point-like source</title><author>Bateman, James ; Nimmrichter, Stefan ; Hornberger, Klaus ; Ulbricht, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-4a23f9d5e6e6cf3dd17a2019e1a32ed71da81c4a11bd8a60bc1c98cdbb145ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/357/354</topic><topic>639/301/930/328/1650</topic><topic>639/766/36</topic><topic>639/766/483/640</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bateman, James</creatorcontrib><creatorcontrib>Nimmrichter, Stefan</creatorcontrib><creatorcontrib>Hornberger, Klaus</creatorcontrib><creatorcontrib>Ulbricht, Hendrik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bateman, James</au><au>Nimmrichter, Stefan</au><au>Hornberger, Klaus</au><au>Ulbricht, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-field interferometry of a free-falling nanoparticle from a point-like source</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-02</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4788</spage><epage>4788</epage><pages>4788-4788</pages><artnum>4788</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over &gt;150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology. Testing the validity of the quantum superposition principle with increasingly large particles may shed light on the quantum to classical transition for macroscopic objects. Here, Bateman et al . propose a near-field interference scheme based on the single-source Talbot effect for 10 6  amu silicon particles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25179560</pmid><doi>10.1038/ncomms5788</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-09, Vol.5 (1), p.4788-4788, Article 4788
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1560099917
source Springer Nature OA/Free Journals
subjects 639/301/357/354
639/301/930/328/1650
639/766/36
639/766/483/640
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Near-field interferometry of a free-falling nanoparticle from a point-like source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-field%20interferometry%20of%20a%20free-falling%20nanoparticle%20from%20a%20point-like%20source&rft.jtitle=Nature%20communications&rft.au=Bateman,%20James&rft.date=2014-09-02&rft.volume=5&rft.issue=1&rft.spage=4788&rft.epage=4788&rft.pages=4788-4788&rft.artnum=4788&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5788&rft_dat=%3Cproquest_C6C%3E3419462771%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558791699&rft_id=info:pmid/25179560&rfr_iscdi=true