Abnormal behavior detection using dominant sets

Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2014-07, Vol.25 (5), p.1351-1368
Hauptverfasser: Alvar, Manuel, Torsello, Andrea, Sanchez-Miralles, Alvaro, Armingol, José María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1368
container_issue 5
container_start_page 1351
container_title Machine vision and applications
container_volume 25
creator Alvar, Manuel
Torsello, Andrea
Sanchez-Miralles, Alvaro
Armingol, José María
description Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy K -Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least 1.5 points lower than the others.
doi_str_mv 10.1007/s00138-014-0615-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559713403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559713403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9636c0236992d73b0996ac3ec4c92bf79914d4b96ddf9d412cd06084f7b629883</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL17qTj426RyXxS9Y8KLn0Cbp2qVN1qQV_Pe2VBAEmcPM4XlfhoeQawp3FECtEgDlRQ5U5CDpOhcnZEEFZzlVEk_JAnC8C0B2Ti5SOgCAUEosyGpT-RC7ss0q915-NiFm1vXO9E3w2ZAav89s6Bpf-j5Lrk-X5Kwu2-SufvaSvD3cv26f8t3L4_N2s8sNL1ifo-TSAOMSkVnFK0CUpeHOCIOsqhUiFVZUKK2t0QrKjAUJhahVJRkWBV-S27n3GMPH4FKvuyYZ17ald2FImq7XqCgXwEf05g96CEP043eaMTlOIUCMFJ0pE0NK0dX6GJuujF-agp4U6lmhHhXqSaGeMmzOpJH1exd_m_8PfQOjTHFR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262628404</pqid></control><display><type>article</type><title>Abnormal behavior detection using dominant sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alvar, Manuel ; Torsello, Andrea ; Sanchez-Miralles, Alvaro ; Armingol, José María</creator><creatorcontrib>Alvar, Manuel ; Torsello, Andrea ; Sanchez-Miralles, Alvaro ; Armingol, José María</creatorcontrib><description>Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy K -Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least 1.5 points lower than the others.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-014-0615-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Behavior ; Communications Engineering ; Computer Science ; Dangerous ; Error detection ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Gaussian ; Human behavior ; Image Processing and Computer Vision ; Machine vision ; Networks ; Original Paper ; Pattern Recognition ; Robustness ; Robustness (mathematics) ; Surveillance systems ; Vision systems</subject><ispartof>Machine vision and applications, 2014-07, Vol.25 (5), p.1351-1368</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Machine Vision and Applications is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9636c0236992d73b0996ac3ec4c92bf79914d4b96ddf9d412cd06084f7b629883</citedby><cites>FETCH-LOGICAL-c382t-9636c0236992d73b0996ac3ec4c92bf79914d4b96ddf9d412cd06084f7b629883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-014-0615-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-014-0615-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alvar, Manuel</creatorcontrib><creatorcontrib>Torsello, Andrea</creatorcontrib><creatorcontrib>Sanchez-Miralles, Alvaro</creatorcontrib><creatorcontrib>Armingol, José María</creatorcontrib><title>Abnormal behavior detection using dominant sets</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy K -Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least 1.5 points lower than the others.</description><subject>Behavior</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Dangerous</subject><subject>Error detection</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Gaussian</subject><subject>Human behavior</subject><subject>Image Processing and Computer Vision</subject><subject>Machine vision</subject><subject>Networks</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Surveillance systems</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FL17qTj426RyXxS9Y8KLn0Cbp2qVN1qQV_Pe2VBAEmcPM4XlfhoeQawp3FECtEgDlRQ5U5CDpOhcnZEEFZzlVEk_JAnC8C0B2Ti5SOgCAUEosyGpT-RC7ss0q915-NiFm1vXO9E3w2ZAav89s6Bpf-j5Lrk-X5Kwu2-SufvaSvD3cv26f8t3L4_N2s8sNL1ifo-TSAOMSkVnFK0CUpeHOCIOsqhUiFVZUKK2t0QrKjAUJhahVJRkWBV-S27n3GMPH4FKvuyYZ17ald2FImq7XqCgXwEf05g96CEP043eaMTlOIUCMFJ0pE0NK0dX6GJuujF-agp4U6lmhHhXqSaGeMmzOpJH1exd_m_8PfQOjTHFR</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Alvar, Manuel</creator><creator>Torsello, Andrea</creator><creator>Sanchez-Miralles, Alvaro</creator><creator>Armingol, José María</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Abnormal behavior detection using dominant sets</title><author>Alvar, Manuel ; Torsello, Andrea ; Sanchez-Miralles, Alvaro ; Armingol, José María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9636c0236992d73b0996ac3ec4c92bf79914d4b96ddf9d412cd06084f7b629883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Behavior</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Dangerous</topic><topic>Error detection</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Gaussian</topic><topic>Human behavior</topic><topic>Image Processing and Computer Vision</topic><topic>Machine vision</topic><topic>Networks</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Surveillance systems</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvar, Manuel</creatorcontrib><creatorcontrib>Torsello, Andrea</creatorcontrib><creatorcontrib>Sanchez-Miralles, Alvaro</creatorcontrib><creatorcontrib>Armingol, José María</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvar, Manuel</au><au>Torsello, Andrea</au><au>Sanchez-Miralles, Alvaro</au><au>Armingol, José María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormal behavior detection using dominant sets</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>25</volume><issue>5</issue><spage>1351</spage><epage>1368</epage><pages>1351-1368</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>Smart surveillance systems are increasingly being used to detect potentially dangerous situations. To do so, the common and easier way is to model normal human behaviors and consider as abnormal any new strange behavior in the scene. In this article, Dominant Sets is adapted to model most frequent behaviors and to detect any unknown event to trigger an alarm. It is proved that after an unsupervised training, Dominant Sets can robustly detect abnormal behaviors. The method is tested in several different cases and compared to other usual clusterization methods such as KNN, mixture of Gaussians or Fuzzy K -Means to confirm its robustness and performance. The overall performance of abnormal behavior detection based on Dominant Sets is better, being the error ratio at least 1.5 points lower than the others.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-014-0615-4</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2014-07, Vol.25 (5), p.1351-1368
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_miscellaneous_1559713403
source SpringerLink Journals - AutoHoldings
subjects Behavior
Communications Engineering
Computer Science
Dangerous
Error detection
Fuzzy
Fuzzy logic
Fuzzy set theory
Gaussian
Human behavior
Image Processing and Computer Vision
Machine vision
Networks
Original Paper
Pattern Recognition
Robustness
Robustness (mathematics)
Surveillance systems
Vision systems
title Abnormal behavior detection using dominant sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormal%20behavior%20detection%20using%20dominant%20sets&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Alvar,%20Manuel&rft.date=2014-07-01&rft.volume=25&rft.issue=5&rft.spage=1351&rft.epage=1368&rft.pages=1351-1368&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-014-0615-4&rft_dat=%3Cproquest_cross%3E1559713403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262628404&rft_id=info:pmid/&rfr_iscdi=true