Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography
Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol o...
Gespeichert in:
Veröffentlicht in: | Journal of separation science 2014-08, Vol.37 (15), p.1982-1988 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1988 |
---|---|
container_issue | 15 |
container_start_page | 1982 |
container_title | Journal of separation science |
container_volume | 37 |
creator | Bagheri, Habib Piri‐Moghadam, Hamed Rastegar, Soroush Taheri, Navid |
description | Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels. |
doi_str_mv | 10.1002/jssc.201400252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559710489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559710489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4916-37e8569f551b66b91c59ae0707b5dd74aa3e15c039326ff57eede8df2e69a4943</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEoqWwZQmWEFI3U-z4Fi-rUWlBFQgNLRIby3FOJh6SOLUTtbPrIyCx5uV4EjyaYZBY4YV9rPP9__HlZNlzgk8IxvmbVYz2JMeEpQ3PH2SHRBA-U5Swh_sYi4PsSYwrjIksFH6cHeSsyDmW9DD7edaCHYOPw9Sj0Y2mdwZF3_66_7GENH8vTYQKWQimcxZZ3w0-uhFQb3pfuxJCRLUPyPet6wElJvik2li4KgVDk_QI7sZg7Oh8j27d2KDGLZtNEkLSdqa3gFp3M7lUqAm-M6NfBjM066fZo9q0EZ7t1qPs6u3Z5_nF7PLj-bv56eXMMkXEjEoouFA156QUolTEcmUASyxLXlWSGUOBcIupormoay4BKiiqOgehDFOMHmXHW98h-JsJ4qg7Fy20renBT1ETzpUkmBXqP1AmOculLBL66h905afQp4tsKEEoUZwm6sWOmsoOKj0E15mw1n_-KAGvd4CJ1rR1SO_l4l-uEIJRwhPHttyta2G9zxOsN52iN52i952i3y8WcyoLkWSzrczFEe72MhO-aSGp5PrLh3NNPl1f068y1xeJf7nla-O1WYZ0lKtF8uU4DVZwQn8DpwHQeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546131953</pqid></control><display><type>article</type><title>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Bagheri, Habib ; Piri‐Moghadam, Hamed ; Rastegar, Soroush ; Taheri, Navid</creator><creatorcontrib>Bagheri, Habib ; Piri‐Moghadam, Hamed ; Rastegar, Soroush ; Taheri, Navid</creatorcontrib><description>Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.</description><identifier>ISSN: 1615-9306</identifier><identifier>EISSN: 1615-9314</identifier><identifier>DOI: 10.1002/jssc.201400252</identifier><identifier>PMID: 24825073</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH</publisher><subject>Analysis ; Analytical chemistry ; Anti-Inflammatory Agents - blood ; Anti-Inflammatory Agents - isolation & purification ; Anti-Inflammatory Agents - urine ; Automation - instrumentation ; Automation - methods ; Biological and medical sciences ; blood plasma ; Ceramic composites ; Ceramic fibers ; Ceramics ; Ceramics - chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Chromatography, High Pressure Liquid ; Clobetasol - blood ; Clobetasol - isolation & purification ; Clobetasol - urine ; detection limit ; Electrospinning ; Exact sciences and technology ; General pharmacology ; High-performance liquid chromatography ; Humans ; Iron ; Liquid chromatography ; Male ; Medical sciences ; Metal oxide nanofibers ; Metal oxides ; Micro-solid-phase extraction ; Nanocomposites ; Nanofibers ; Nanofibers - chemistry ; Naproxen - blood ; Naproxen - isolation & purification ; Naproxen - urine ; Other chromatographic methods ; Pharmacology. Drug treatments ; scanning electron microscopes ; Scanning electron microscopy ; Sheet metal ; Solid Phase Microextraction - instrumentation ; Solid Phase Microextraction - methods ; sorption ; surface area ; titanium ; Titanium - chemistry ; Titanium dioxide ; urinalysis</subject><ispartof>Journal of separation science, 2014-08, Vol.37 (15), p.1982-1988</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4916-37e8569f551b66b91c59ae0707b5dd74aa3e15c039326ff57eede8df2e69a4943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjssc.201400252$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjssc.201400252$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28664315$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24825073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagheri, Habib</creatorcontrib><creatorcontrib>Piri‐Moghadam, Hamed</creatorcontrib><creatorcontrib>Rastegar, Soroush</creatorcontrib><creatorcontrib>Taheri, Navid</creatorcontrib><title>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</title><title>Journal of separation science</title><addtitle>J. Sep. Science</addtitle><description>Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.</description><subject>Analysis</subject><subject>Analytical chemistry</subject><subject>Anti-Inflammatory Agents - blood</subject><subject>Anti-Inflammatory Agents - isolation & purification</subject><subject>Anti-Inflammatory Agents - urine</subject><subject>Automation - instrumentation</subject><subject>Automation - methods</subject><subject>Biological and medical sciences</subject><subject>blood plasma</subject><subject>Ceramic composites</subject><subject>Ceramic fibers</subject><subject>Ceramics</subject><subject>Ceramics - chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Clobetasol - blood</subject><subject>Clobetasol - isolation & purification</subject><subject>Clobetasol - urine</subject><subject>detection limit</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>High-performance liquid chromatography</subject><subject>Humans</subject><subject>Iron</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metal oxide nanofibers</subject><subject>Metal oxides</subject><subject>Micro-solid-phase extraction</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Naproxen - blood</subject><subject>Naproxen - isolation & purification</subject><subject>Naproxen - urine</subject><subject>Other chromatographic methods</subject><subject>Pharmacology. Drug treatments</subject><subject>scanning electron microscopes</subject><subject>Scanning electron microscopy</subject><subject>Sheet metal</subject><subject>Solid Phase Microextraction - instrumentation</subject><subject>Solid Phase Microextraction - methods</subject><subject>sorption</subject><subject>surface area</subject><subject>titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>urinalysis</subject><issn>1615-9306</issn><issn>1615-9314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstu1DAUhiMEoqWwZQmWEFI3U-z4Fi-rUWlBFQgNLRIby3FOJh6SOLUTtbPrIyCx5uV4EjyaYZBY4YV9rPP9__HlZNlzgk8IxvmbVYz2JMeEpQ3PH2SHRBA-U5Swh_sYi4PsSYwrjIksFH6cHeSsyDmW9DD7edaCHYOPw9Sj0Y2mdwZF3_66_7GENH8vTYQKWQimcxZZ3w0-uhFQb3pfuxJCRLUPyPet6wElJvik2li4KgVDk_QI7sZg7Oh8j27d2KDGLZtNEkLSdqa3gFp3M7lUqAm-M6NfBjM066fZo9q0EZ7t1qPs6u3Z5_nF7PLj-bv56eXMMkXEjEoouFA156QUolTEcmUASyxLXlWSGUOBcIupormoay4BKiiqOgehDFOMHmXHW98h-JsJ4qg7Fy20renBT1ETzpUkmBXqP1AmOculLBL66h905afQp4tsKEEoUZwm6sWOmsoOKj0E15mw1n_-KAGvd4CJ1rR1SO_l4l-uEIJRwhPHttyta2G9zxOsN52iN52i952i3y8WcyoLkWSzrczFEe72MhO-aSGp5PrLh3NNPl1f068y1xeJf7nla-O1WYZ0lKtF8uU4DVZwQn8DpwHQeQ</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Bagheri, Habib</creator><creator>Piri‐Moghadam, Hamed</creator><creator>Rastegar, Soroush</creator><creator>Taheri, Navid</creator><general>Wiley-VCH</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SR</scope><scope>JG9</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201408</creationdate><title>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</title><author>Bagheri, Habib ; Piri‐Moghadam, Hamed ; Rastegar, Soroush ; Taheri, Navid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4916-37e8569f551b66b91c59ae0707b5dd74aa3e15c039326ff57eede8df2e69a4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Analytical chemistry</topic><topic>Anti-Inflammatory Agents - blood</topic><topic>Anti-Inflammatory Agents - isolation & purification</topic><topic>Anti-Inflammatory Agents - urine</topic><topic>Automation - instrumentation</topic><topic>Automation - methods</topic><topic>Biological and medical sciences</topic><topic>blood plasma</topic><topic>Ceramic composites</topic><topic>Ceramic fibers</topic><topic>Ceramics</topic><topic>Ceramics - chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Clobetasol - blood</topic><topic>Clobetasol - isolation & purification</topic><topic>Clobetasol - urine</topic><topic>detection limit</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>High-performance liquid chromatography</topic><topic>Humans</topic><topic>Iron</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metal oxide nanofibers</topic><topic>Metal oxides</topic><topic>Micro-solid-phase extraction</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Naproxen - blood</topic><topic>Naproxen - isolation & purification</topic><topic>Naproxen - urine</topic><topic>Other chromatographic methods</topic><topic>Pharmacology. Drug treatments</topic><topic>scanning electron microscopes</topic><topic>Scanning electron microscopy</topic><topic>Sheet metal</topic><topic>Solid Phase Microextraction - instrumentation</topic><topic>Solid Phase Microextraction - methods</topic><topic>sorption</topic><topic>surface area</topic><topic>titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>urinalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Habib</creatorcontrib><creatorcontrib>Piri‐Moghadam, Hamed</creatorcontrib><creatorcontrib>Rastegar, Soroush</creatorcontrib><creatorcontrib>Taheri, Navid</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of separation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Habib</au><au>Piri‐Moghadam, Hamed</au><au>Rastegar, Soroush</au><au>Taheri, Navid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</atitle><jtitle>Journal of separation science</jtitle><addtitle>J. Sep. Science</addtitle><date>2014-08</date><risdate>2014</risdate><volume>37</volume><issue>15</issue><spage>1982</spage><epage>1988</epage><pages>1982-1988</pages><issn>1615-9306</issn><eissn>1615-9314</eissn><abstract>Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.</abstract><cop>Weinheim</cop><pub>Wiley-VCH</pub><pmid>24825073</pmid><doi>10.1002/jssc.201400252</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9306 |
ispartof | Journal of separation science, 2014-08, Vol.37 (15), p.1982-1988 |
issn | 1615-9306 1615-9314 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559710489 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Analysis Analytical chemistry Anti-Inflammatory Agents - blood Anti-Inflammatory Agents - isolation & purification Anti-Inflammatory Agents - urine Automation - instrumentation Automation - methods Biological and medical sciences blood plasma Ceramic composites Ceramic fibers Ceramics Ceramics - chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Chromatography Chromatography, High Pressure Liquid Clobetasol - blood Clobetasol - isolation & purification Clobetasol - urine detection limit Electrospinning Exact sciences and technology General pharmacology High-performance liquid chromatography Humans Iron Liquid chromatography Male Medical sciences Metal oxide nanofibers Metal oxides Micro-solid-phase extraction Nanocomposites Nanofibers Nanofibers - chemistry Naproxen - blood Naproxen - isolation & purification Naproxen - urine Other chromatographic methods Pharmacology. Drug treatments scanning electron microscopes Scanning electron microscopy Sheet metal Solid Phase Microextraction - instrumentation Solid Phase Microextraction - methods sorption surface area titanium Titanium - chemistry Titanium dioxide urinalysis |
title | Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20titania%20sol%E2%80%93gel%E2%80%90based%20ceramic%20composite%20nanofibers%20for%20online%20micro%E2%80%90%20solid%E2%80%90phase%20extraction%20with%20high%E2%80%90performance%20liquid%20chromatography&rft.jtitle=Journal%20of%20separation%20science&rft.au=Bagheri,%20Habib&rft.date=2014-08&rft.volume=37&rft.issue=15&rft.spage=1982&rft.epage=1988&rft.pages=1982-1988&rft.issn=1615-9306&rft.eissn=1615-9314&rft_id=info:doi/10.1002/jssc.201400252&rft_dat=%3Cproquest_pubme%3E1559710489%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546131953&rft_id=info:pmid/24825073&rfr_iscdi=true |