Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography

Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of separation science 2014-08, Vol.37 (15), p.1982-1988
Hauptverfasser: Bagheri, Habib, Piri‐Moghadam, Hamed, Rastegar, Soroush, Taheri, Navid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1988
container_issue 15
container_start_page 1982
container_title Journal of separation science
container_volume 37
creator Bagheri, Habib
Piri‐Moghadam, Hamed
Rastegar, Soroush
Taheri, Navid
description Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.
doi_str_mv 10.1002/jssc.201400252
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559710489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559710489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4916-37e8569f551b66b91c59ae0707b5dd74aa3e15c039326ff57eede8df2e69a4943</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEoqWwZQmWEFI3U-z4Fi-rUWlBFQgNLRIby3FOJh6SOLUTtbPrIyCx5uV4EjyaYZBY4YV9rPP9__HlZNlzgk8IxvmbVYz2JMeEpQ3PH2SHRBA-U5Swh_sYi4PsSYwrjIksFH6cHeSsyDmW9DD7edaCHYOPw9Sj0Y2mdwZF3_66_7GENH8vTYQKWQimcxZZ3w0-uhFQb3pfuxJCRLUPyPet6wElJvik2li4KgVDk_QI7sZg7Oh8j27d2KDGLZtNEkLSdqa3gFp3M7lUqAm-M6NfBjM066fZo9q0EZ7t1qPs6u3Z5_nF7PLj-bv56eXMMkXEjEoouFA156QUolTEcmUASyxLXlWSGUOBcIupormoay4BKiiqOgehDFOMHmXHW98h-JsJ4qg7Fy20renBT1ETzpUkmBXqP1AmOculLBL66h905afQp4tsKEEoUZwm6sWOmsoOKj0E15mw1n_-KAGvd4CJ1rR1SO_l4l-uEIJRwhPHttyta2G9zxOsN52iN52i952i3y8WcyoLkWSzrczFEe72MhO-aSGp5PrLh3NNPl1f068y1xeJf7nla-O1WYZ0lKtF8uU4DVZwQn8DpwHQeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546131953</pqid></control><display><type>article</type><title>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Bagheri, Habib ; Piri‐Moghadam, Hamed ; Rastegar, Soroush ; Taheri, Navid</creator><creatorcontrib>Bagheri, Habib ; Piri‐Moghadam, Hamed ; Rastegar, Soroush ; Taheri, Navid</creatorcontrib><description>Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.</description><identifier>ISSN: 1615-9306</identifier><identifier>EISSN: 1615-9314</identifier><identifier>DOI: 10.1002/jssc.201400252</identifier><identifier>PMID: 24825073</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH</publisher><subject>Analysis ; Analytical chemistry ; Anti-Inflammatory Agents - blood ; Anti-Inflammatory Agents - isolation &amp; purification ; Anti-Inflammatory Agents - urine ; Automation - instrumentation ; Automation - methods ; Biological and medical sciences ; blood plasma ; Ceramic composites ; Ceramic fibers ; Ceramics ; Ceramics - chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Chromatography, High Pressure Liquid ; Clobetasol - blood ; Clobetasol - isolation &amp; purification ; Clobetasol - urine ; detection limit ; Electrospinning ; Exact sciences and technology ; General pharmacology ; High-performance liquid chromatography ; Humans ; Iron ; Liquid chromatography ; Male ; Medical sciences ; Metal oxide nanofibers ; Metal oxides ; Micro-solid-phase extraction ; Nanocomposites ; Nanofibers ; Nanofibers - chemistry ; Naproxen - blood ; Naproxen - isolation &amp; purification ; Naproxen - urine ; Other chromatographic methods ; Pharmacology. Drug treatments ; scanning electron microscopes ; Scanning electron microscopy ; Sheet metal ; Solid Phase Microextraction - instrumentation ; Solid Phase Microextraction - methods ; sorption ; surface area ; titanium ; Titanium - chemistry ; Titanium dioxide ; urinalysis</subject><ispartof>Journal of separation science, 2014-08, Vol.37 (15), p.1982-1988</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4916-37e8569f551b66b91c59ae0707b5dd74aa3e15c039326ff57eede8df2e69a4943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjssc.201400252$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjssc.201400252$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28664315$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24825073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagheri, Habib</creatorcontrib><creatorcontrib>Piri‐Moghadam, Hamed</creatorcontrib><creatorcontrib>Rastegar, Soroush</creatorcontrib><creatorcontrib>Taheri, Navid</creatorcontrib><title>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</title><title>Journal of separation science</title><addtitle>J. Sep. Science</addtitle><description>Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.</description><subject>Analysis</subject><subject>Analytical chemistry</subject><subject>Anti-Inflammatory Agents - blood</subject><subject>Anti-Inflammatory Agents - isolation &amp; purification</subject><subject>Anti-Inflammatory Agents - urine</subject><subject>Automation - instrumentation</subject><subject>Automation - methods</subject><subject>Biological and medical sciences</subject><subject>blood plasma</subject><subject>Ceramic composites</subject><subject>Ceramic fibers</subject><subject>Ceramics</subject><subject>Ceramics - chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Clobetasol - blood</subject><subject>Clobetasol - isolation &amp; purification</subject><subject>Clobetasol - urine</subject><subject>detection limit</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>High-performance liquid chromatography</subject><subject>Humans</subject><subject>Iron</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metal oxide nanofibers</subject><subject>Metal oxides</subject><subject>Micro-solid-phase extraction</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Naproxen - blood</subject><subject>Naproxen - isolation &amp; purification</subject><subject>Naproxen - urine</subject><subject>Other chromatographic methods</subject><subject>Pharmacology. Drug treatments</subject><subject>scanning electron microscopes</subject><subject>Scanning electron microscopy</subject><subject>Sheet metal</subject><subject>Solid Phase Microextraction - instrumentation</subject><subject>Solid Phase Microextraction - methods</subject><subject>sorption</subject><subject>surface area</subject><subject>titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>urinalysis</subject><issn>1615-9306</issn><issn>1615-9314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkstu1DAUhiMEoqWwZQmWEFI3U-z4Fi-rUWlBFQgNLRIby3FOJh6SOLUTtbPrIyCx5uV4EjyaYZBY4YV9rPP9__HlZNlzgk8IxvmbVYz2JMeEpQ3PH2SHRBA-U5Swh_sYi4PsSYwrjIksFH6cHeSsyDmW9DD7edaCHYOPw9Sj0Y2mdwZF3_66_7GENH8vTYQKWQimcxZZ3w0-uhFQb3pfuxJCRLUPyPet6wElJvik2li4KgVDk_QI7sZg7Oh8j27d2KDGLZtNEkLSdqa3gFp3M7lUqAm-M6NfBjM066fZo9q0EZ7t1qPs6u3Z5_nF7PLj-bv56eXMMkXEjEoouFA156QUolTEcmUASyxLXlWSGUOBcIupormoay4BKiiqOgehDFOMHmXHW98h-JsJ4qg7Fy20renBT1ETzpUkmBXqP1AmOculLBL66h905afQp4tsKEEoUZwm6sWOmsoOKj0E15mw1n_-KAGvd4CJ1rR1SO_l4l-uEIJRwhPHttyta2G9zxOsN52iN52i952i3y8WcyoLkWSzrczFEe72MhO-aSGp5PrLh3NNPl1f068y1xeJf7nla-O1WYZ0lKtF8uU4DVZwQn8DpwHQeQ</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Bagheri, Habib</creator><creator>Piri‐Moghadam, Hamed</creator><creator>Rastegar, Soroush</creator><creator>Taheri, Navid</creator><general>Wiley-VCH</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SR</scope><scope>JG9</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201408</creationdate><title>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</title><author>Bagheri, Habib ; Piri‐Moghadam, Hamed ; Rastegar, Soroush ; Taheri, Navid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4916-37e8569f551b66b91c59ae0707b5dd74aa3e15c039326ff57eede8df2e69a4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Analytical chemistry</topic><topic>Anti-Inflammatory Agents - blood</topic><topic>Anti-Inflammatory Agents - isolation &amp; purification</topic><topic>Anti-Inflammatory Agents - urine</topic><topic>Automation - instrumentation</topic><topic>Automation - methods</topic><topic>Biological and medical sciences</topic><topic>blood plasma</topic><topic>Ceramic composites</topic><topic>Ceramic fibers</topic><topic>Ceramics</topic><topic>Ceramics - chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Clobetasol - blood</topic><topic>Clobetasol - isolation &amp; purification</topic><topic>Clobetasol - urine</topic><topic>detection limit</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>High-performance liquid chromatography</topic><topic>Humans</topic><topic>Iron</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metal oxide nanofibers</topic><topic>Metal oxides</topic><topic>Micro-solid-phase extraction</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Naproxen - blood</topic><topic>Naproxen - isolation &amp; purification</topic><topic>Naproxen - urine</topic><topic>Other chromatographic methods</topic><topic>Pharmacology. Drug treatments</topic><topic>scanning electron microscopes</topic><topic>Scanning electron microscopy</topic><topic>Sheet metal</topic><topic>Solid Phase Microextraction - instrumentation</topic><topic>Solid Phase Microextraction - methods</topic><topic>sorption</topic><topic>surface area</topic><topic>titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>urinalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Habib</creatorcontrib><creatorcontrib>Piri‐Moghadam, Hamed</creatorcontrib><creatorcontrib>Rastegar, Soroush</creatorcontrib><creatorcontrib>Taheri, Navid</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of separation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Habib</au><au>Piri‐Moghadam, Hamed</au><au>Rastegar, Soroush</au><au>Taheri, Navid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography</atitle><jtitle>Journal of separation science</jtitle><addtitle>J. Sep. Science</addtitle><date>2014-08</date><risdate>2014</risdate><volume>37</volume><issue>15</issue><spage>1982</spage><epage>1988</epage><pages>1982-1988</pages><issn>1615-9306</issn><eissn>1615-9314</eissn><abstract>Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.</abstract><cop>Weinheim</cop><pub>Wiley-VCH</pub><pmid>24825073</pmid><doi>10.1002/jssc.201400252</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-9306
ispartof Journal of separation science, 2014-08, Vol.37 (15), p.1982-1988
issn 1615-9306
1615-9314
language eng
recordid cdi_proquest_miscellaneous_1559710489
source MEDLINE; Access via Wiley Online Library
subjects Analysis
Analytical chemistry
Anti-Inflammatory Agents - blood
Anti-Inflammatory Agents - isolation & purification
Anti-Inflammatory Agents - urine
Automation - instrumentation
Automation - methods
Biological and medical sciences
blood plasma
Ceramic composites
Ceramic fibers
Ceramics
Ceramics - chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography
Chromatography, High Pressure Liquid
Clobetasol - blood
Clobetasol - isolation & purification
Clobetasol - urine
detection limit
Electrospinning
Exact sciences and technology
General pharmacology
High-performance liquid chromatography
Humans
Iron
Liquid chromatography
Male
Medical sciences
Metal oxide nanofibers
Metal oxides
Micro-solid-phase extraction
Nanocomposites
Nanofibers
Nanofibers - chemistry
Naproxen - blood
Naproxen - isolation & purification
Naproxen - urine
Other chromatographic methods
Pharmacology. Drug treatments
scanning electron microscopes
Scanning electron microscopy
Sheet metal
Solid Phase Microextraction - instrumentation
Solid Phase Microextraction - methods
sorption
surface area
titanium
Titanium - chemistry
Titanium dioxide
urinalysis
title Electrospun titania sol–gel‐based ceramic composite nanofibers for online micro‐ solid‐phase extraction with high‐performance liquid chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20titania%20sol%E2%80%93gel%E2%80%90based%20ceramic%20composite%20nanofibers%20for%20online%20micro%E2%80%90%20solid%E2%80%90phase%20extraction%20with%20high%E2%80%90performance%20liquid%20chromatography&rft.jtitle=Journal%20of%20separation%20science&rft.au=Bagheri,%20Habib&rft.date=2014-08&rft.volume=37&rft.issue=15&rft.spage=1982&rft.epage=1988&rft.pages=1982-1988&rft.issn=1615-9306&rft.eissn=1615-9314&rft_id=info:doi/10.1002/jssc.201400252&rft_dat=%3Cproquest_pubme%3E1559710489%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546131953&rft_id=info:pmid/24825073&rfr_iscdi=true