Electron-electron interactions and the metal-insulator transition in heavily doped silicon

The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2011-08, Vol.523 (8-9), p.599-611
1. Verfasser: v Lohneysen, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 8-9
container_start_page 599
container_title Annalen der Physik
container_volume 523
creator v Lohneysen, H
description The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side. Continuous stress tuning allows the observation of finite‐temperature dynamic scaling of σ (T,S) and hence a reliable determination of the critical exponent μ of the extrapolated zero‐temperature conductivity σ (0) ∼ | S ‐ Sc |μ, i.e., μ = 1, and of the dynamical exponent z = 3. The issue of half‐filling vs. away from half‐filling of the donor band (i.e., uncompensated vs. compensated semiconductors) is discussed in detail. The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side.
doi_str_mv 10.1002/andp.201100034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559709717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3406782631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-2025b508452adb9d33f1ee380c3b216c9274678b19b3998e45a5071361d18393</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWKpb1wNu3ExNJsnMZClaH1DqA1FwEzIztzQ1TWqSqv33ZqiIuHGVe8M5l48PoSOCRwTj4lTZbjUqMEkLpmwHDQgvSE7rWuyiQf-XZsz20WEIi7RijgtcsAF6GRtoo3c2h-8h0zaCV23UzoYs3c3iHLIlRGVybcPaqOh8Fr2yQfdM4rM5qHdtNlnnVtBlQRvdOnuA9mbKBDj8fofo8XL8eH6dT26vbs7PJnnLOGN5ysEbjmvGC9U1oqN0RgBS2pY2BSlbUVSsrOqGiIYKUQPjiuOK0JJ0pKaCDtHJ9uzKu7c1hCiXOrRgjLLg1kESzkWFRUWqhB7_QRdu7W0K11OMElrzOlGjLdV6F4KHmVx5vVR-IwmWfdmyL1v-lJ0EsRU-tIHNP7Q8m17c_XbzratDhM8fV_lXWVa04vJ5eiXvJ08lfZk-SE6_AHeWkSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554313858</pqid></control><display><type>article</type><title>Electron-electron interactions and the metal-insulator transition in heavily doped silicon</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>v Lohneysen, H</creator><creatorcontrib>v Lohneysen, H</creatorcontrib><description>The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side. Continuous stress tuning allows the observation of finite‐temperature dynamic scaling of σ (T,S) and hence a reliable determination of the critical exponent μ of the extrapolated zero‐temperature conductivity σ (0) ∼ | S ‐ Sc |μ, i.e., μ = 1, and of the dynamical exponent z = 3. The issue of half‐filling vs. away from half‐filling of the donor band (i.e., uncompensated vs. compensated semiconductors) is discussed in detail. The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201100034</identifier><identifier>CODEN: ANPYA2</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Coulomb friction ; critical behavior ; dynamic scaling ; electrical conductivity ; electron-electron interaction ; heavily doped silicon ; Hubbard splitting ; Insulators ; Kondo effect ; Lead (metal) ; Metal-insulator transition ; Semiconductors ; specific heat ; Splitting ; Stress concentration ; Stresses ; thermoelectric power</subject><ispartof>Annalen der Physik, 2011-08, Vol.523 (8-9), p.599-611</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-2025b508452adb9d33f1ee380c3b216c9274678b19b3998e45a5071361d18393</citedby><cites>FETCH-LOGICAL-c4544-2025b508452adb9d33f1ee380c3b216c9274678b19b3998e45a5071361d18393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201100034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201100034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>v Lohneysen, H</creatorcontrib><title>Electron-electron interactions and the metal-insulator transition in heavily doped silicon</title><title>Annalen der Physik</title><addtitle>Ann. Phys</addtitle><description>The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side. Continuous stress tuning allows the observation of finite‐temperature dynamic scaling of σ (T,S) and hence a reliable determination of the critical exponent μ of the extrapolated zero‐temperature conductivity σ (0) ∼ | S ‐ Sc |μ, i.e., μ = 1, and of the dynamical exponent z = 3. The issue of half‐filling vs. away from half‐filling of the donor band (i.e., uncompensated vs. compensated semiconductors) is discussed in detail. The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side.</description><subject>Coulomb friction</subject><subject>critical behavior</subject><subject>dynamic scaling</subject><subject>electrical conductivity</subject><subject>electron-electron interaction</subject><subject>heavily doped silicon</subject><subject>Hubbard splitting</subject><subject>Insulators</subject><subject>Kondo effect</subject><subject>Lead (metal)</subject><subject>Metal-insulator transition</subject><subject>Semiconductors</subject><subject>specific heat</subject><subject>Splitting</subject><subject>Stress concentration</subject><subject>Stresses</subject><subject>thermoelectric power</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWKpb1wNu3ExNJsnMZClaH1DqA1FwEzIztzQ1TWqSqv33ZqiIuHGVe8M5l48PoSOCRwTj4lTZbjUqMEkLpmwHDQgvSE7rWuyiQf-XZsz20WEIi7RijgtcsAF6GRtoo3c2h-8h0zaCV23UzoYs3c3iHLIlRGVybcPaqOh8Fr2yQfdM4rM5qHdtNlnnVtBlQRvdOnuA9mbKBDj8fofo8XL8eH6dT26vbs7PJnnLOGN5ysEbjmvGC9U1oqN0RgBS2pY2BSlbUVSsrOqGiIYKUQPjiuOK0JJ0pKaCDtHJ9uzKu7c1hCiXOrRgjLLg1kESzkWFRUWqhB7_QRdu7W0K11OMElrzOlGjLdV6F4KHmVx5vVR-IwmWfdmyL1v-lJ0EsRU-tIHNP7Q8m17c_XbzratDhM8fV_lXWVa04vJ5eiXvJ08lfZk-SE6_AHeWkSM</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>v Lohneysen, H</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>201108</creationdate><title>Electron-electron interactions and the metal-insulator transition in heavily doped silicon</title><author>v Lohneysen, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-2025b508452adb9d33f1ee380c3b216c9274678b19b3998e45a5071361d18393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coulomb friction</topic><topic>critical behavior</topic><topic>dynamic scaling</topic><topic>electrical conductivity</topic><topic>electron-electron interaction</topic><topic>heavily doped silicon</topic><topic>Hubbard splitting</topic><topic>Insulators</topic><topic>Kondo effect</topic><topic>Lead (metal)</topic><topic>Metal-insulator transition</topic><topic>Semiconductors</topic><topic>specific heat</topic><topic>Splitting</topic><topic>Stress concentration</topic><topic>Stresses</topic><topic>thermoelectric power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>v Lohneysen, H</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>v Lohneysen, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-electron interactions and the metal-insulator transition in heavily doped silicon</atitle><jtitle>Annalen der Physik</jtitle><addtitle>Ann. Phys</addtitle><date>2011-08</date><risdate>2011</risdate><volume>523</volume><issue>8-9</issue><spage>599</spage><epage>611</epage><pages>599-611</pages><issn>0003-3804</issn><eissn>1521-3889</eissn><coden>ANPYA2</coden><abstract>The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side. Continuous stress tuning allows the observation of finite‐temperature dynamic scaling of σ (T,S) and hence a reliable determination of the critical exponent μ of the extrapolated zero‐temperature conductivity σ (0) ∼ | S ‐ Sc |μ, i.e., μ = 1, and of the dynamical exponent z = 3. The issue of half‐filling vs. away from half‐filling of the donor band (i.e., uncompensated vs. compensated semiconductors) is discussed in detail. The metal‐insulator (MI) transition in Si:P can be tuned by varying the P concentration or – for barely insulating samples – by application of uniaxial stress S. On‐site Coulomb interactions lead to the formation of localized magnetic moments and the Kondo effect on the metallic side, and to a Hubbard splitting of the donor band on the insulating side.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/andp.201100034</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2011-08, Vol.523 (8-9), p.599-611
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_miscellaneous_1559709717
source Wiley Online Library - AutoHoldings Journals
subjects Coulomb friction
critical behavior
dynamic scaling
electrical conductivity
electron-electron interaction
heavily doped silicon
Hubbard splitting
Insulators
Kondo effect
Lead (metal)
Metal-insulator transition
Semiconductors
specific heat
Splitting
Stress concentration
Stresses
thermoelectric power
title Electron-electron interactions and the metal-insulator transition in heavily doped silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-electron%20interactions%20and%20the%20metal-insulator%20transition%20in%20heavily%20doped%20silicon&rft.jtitle=Annalen%20der%20Physik&rft.au=v%20Lohneysen,%20H&rft.date=2011-08&rft.volume=523&rft.issue=8-9&rft.spage=599&rft.epage=611&rft.pages=599-611&rft.issn=0003-3804&rft.eissn=1521-3889&rft.coden=ANPYA2&rft_id=info:doi/10.1002/andp.201100034&rft_dat=%3Cproquest_cross%3E3406782631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554313858&rft_id=info:pmid/&rfr_iscdi=true