Kernel Additive Models for Source Separation

Source separation consists of separating a signal into additive components. It is a topic of considerable interest with many applications that has gathered much attention recently. Here, we introduce a new framework for source separation called Kernel Additive Modelling, which is based on local regr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-08, Vol.62 (16), p.4298-4310
Hauptverfasser: Liutkus, Antoine, Fitzgerald, Derry, Rafii, Zafar, Pardo, Bryan, Daudet, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4310
container_issue 16
container_start_page 4298
container_title IEEE transactions on signal processing
container_volume 62
creator Liutkus, Antoine
Fitzgerald, Derry
Rafii, Zafar
Pardo, Bryan
Daudet, Laurent
description Source separation consists of separating a signal into additive components. It is a topic of considerable interest with many applications that has gathered much attention recently. Here, we introduce a new framework for source separation called Kernel Additive Modelling, which is based on local regression and permits efficient separation of multidimensional and/or nonnegative and/or non-regularly sampled signals. The main idea of the method is to assume that a source at some location can be estimated using its values at other locations nearby, where nearness is defined through a source-specific proximity kernel. Such a kernel provides an efficient way to account for features like periodicity, continuity, smoothness, stability over time or frequency, and self-similarity. In many cases, such local dynamics are indeed much more natural to assess than any global model such as a tensor factorization. This framework permits one to use different proximity kernels for different sources and to separate them using the iterative kernel backfitting algorithm we describe. As we show, kernel additive modelling generalizes many recent and efficient techniques for source separation and opens the path to creating and combining source models in a principled way. Experimental results on the separation of synthetic and audio signals demonstrate the effectiveness of the approach.
doi_str_mv 10.1109/TSP.2014.2332434
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559709677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6842708</ieee_id><sourcerecordid>3443565381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-62e4e0f57f6b575a799a784b94d44041fe42ea89d491c86362b6403e1ff4144a3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuBFFKzVu-BlQQQFt-Zj8nUsRa1YUWgFbyHdneDKuluTtuC_N6WlB08JyTPDzJtl55QMKCXmbjZ9GzBCYcA4Z8DhIOtRA7QgoORhuhPBC6HVx3F2EuMXSRKM7GW3zxhabPJhVdXLeo35S1dhE3PfhXzarUKJ-RQXLrhl3bWn2ZF3TcSz3dnP3h_uZ6NxMXl9fBoNJ0UJnCwLyRCQeKG8nAslnDLGKQ1zAxUAAeoRGDptKjC01JJLNpdAOFLvIY3leD-72fb9dI1dhPrbhV_budqOhxO7eSOUpKUB1izZ661dhO5nhXFpv-tYYtO4FrtVtFQIo4iRSiV6-Y9-pQ3btElSUgjOpdZJka0qQxdjQL-fgBK7idqmqO0maruLOpVc7Rq7WLrGB9eWddzXMa0Y1dQkd7F1NSLuv6UGpojmfwGggtE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565533688</pqid></control><display><type>article</type><title>Kernel Additive Models for Source Separation</title><source>IEEE Xplore</source><creator>Liutkus, Antoine ; Fitzgerald, Derry ; Rafii, Zafar ; Pardo, Bryan ; Daudet, Laurent</creator><creatorcontrib>Liutkus, Antoine ; Fitzgerald, Derry ; Rafii, Zafar ; Pardo, Bryan ; Daudet, Laurent</creatorcontrib><description>Source separation consists of separating a signal into additive components. It is a topic of considerable interest with many applications that has gathered much attention recently. Here, we introduce a new framework for source separation called Kernel Additive Modelling, which is based on local regression and permits efficient separation of multidimensional and/or nonnegative and/or non-regularly sampled signals. The main idea of the method is to assume that a source at some location can be estimated using its values at other locations nearby, where nearness is defined through a source-specific proximity kernel. Such a kernel provides an efficient way to account for features like periodicity, continuity, smoothness, stability over time or frequency, and self-similarity. In many cases, such local dynamics are indeed much more natural to assess than any global model such as a tensor factorization. This framework permits one to use different proximity kernels for different sources and to separate them using the iterative kernel backfitting algorithm we describe. As we show, kernel additive modelling generalizes many recent and efficient techniques for source separation and opens the path to creating and combining source models in a principled way. Experimental results on the separation of synthetic and audio signals demonstrate the effectiveness of the approach.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2332434</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation models ; Additives ; Applied sciences ; Audio signals ; Composting ; Computer Science ; Context ; Detection, estimation, filtering, equalization, prediction ; Engineering Sciences ; Exact sciences and technology ; Heuristic algorithms ; Information, signal and communications theory ; Kernel ; kernel method ; Kernels ; local regression ; Mathematical models ; Modelling ; nonparametric models ; Parametric statistics ; Proximity ; Separation ; Signal and communications theory ; Signal and Image processing ; Signal, noise ; Source separation ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2014-08, Vol.62 (16), p.4298-4310</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-62e4e0f57f6b575a799a784b94d44041fe42ea89d491c86362b6403e1ff4144a3</citedby><cites>FETCH-LOGICAL-c430t-62e4e0f57f6b575a799a784b94d44041fe42ea89d491c86362b6403e1ff4144a3</cites><orcidid>0000-0002-3458-6498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6842708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6842708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28721819$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01011044$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liutkus, Antoine</creatorcontrib><creatorcontrib>Fitzgerald, Derry</creatorcontrib><creatorcontrib>Rafii, Zafar</creatorcontrib><creatorcontrib>Pardo, Bryan</creatorcontrib><creatorcontrib>Daudet, Laurent</creatorcontrib><title>Kernel Additive Models for Source Separation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Source separation consists of separating a signal into additive components. It is a topic of considerable interest with many applications that has gathered much attention recently. Here, we introduce a new framework for source separation called Kernel Additive Modelling, which is based on local regression and permits efficient separation of multidimensional and/or nonnegative and/or non-regularly sampled signals. The main idea of the method is to assume that a source at some location can be estimated using its values at other locations nearby, where nearness is defined through a source-specific proximity kernel. Such a kernel provides an efficient way to account for features like periodicity, continuity, smoothness, stability over time or frequency, and self-similarity. In many cases, such local dynamics are indeed much more natural to assess than any global model such as a tensor factorization. This framework permits one to use different proximity kernels for different sources and to separate them using the iterative kernel backfitting algorithm we describe. As we show, kernel additive modelling generalizes many recent and efficient techniques for source separation and opens the path to creating and combining source models in a principled way. Experimental results on the separation of synthetic and audio signals demonstrate the effectiveness of the approach.</description><subject>Adaptation models</subject><subject>Additives</subject><subject>Applied sciences</subject><subject>Audio signals</subject><subject>Composting</subject><subject>Computer Science</subject><subject>Context</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Heuristic algorithms</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>kernel method</subject><subject>Kernels</subject><subject>local regression</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>nonparametric models</subject><subject>Parametric statistics</subject><subject>Proximity</subject><subject>Separation</subject><subject>Signal and communications theory</subject><subject>Signal and Image processing</subject><subject>Signal, noise</subject><subject>Source separation</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuBFFKzVu-BlQQQFt-Zj8nUsRa1YUWgFbyHdneDKuluTtuC_N6WlB08JyTPDzJtl55QMKCXmbjZ9GzBCYcA4Z8DhIOtRA7QgoORhuhPBC6HVx3F2EuMXSRKM7GW3zxhabPJhVdXLeo35S1dhE3PfhXzarUKJ-RQXLrhl3bWn2ZF3TcSz3dnP3h_uZ6NxMXl9fBoNJ0UJnCwLyRCQeKG8nAslnDLGKQ1zAxUAAeoRGDptKjC01JJLNpdAOFLvIY3leD-72fb9dI1dhPrbhV_budqOhxO7eSOUpKUB1izZ661dhO5nhXFpv-tYYtO4FrtVtFQIo4iRSiV6-Y9-pQ3btElSUgjOpdZJka0qQxdjQL-fgBK7idqmqO0maruLOpVc7Rq7WLrGB9eWddzXMa0Y1dQkd7F1NSLuv6UGpojmfwGggtE</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Liutkus, Antoine</creator><creator>Fitzgerald, Derry</creator><creator>Rafii, Zafar</creator><creator>Pardo, Bryan</creator><creator>Daudet, Laurent</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3458-6498</orcidid></search><sort><creationdate>20140815</creationdate><title>Kernel Additive Models for Source Separation</title><author>Liutkus, Antoine ; Fitzgerald, Derry ; Rafii, Zafar ; Pardo, Bryan ; Daudet, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-62e4e0f57f6b575a799a784b94d44041fe42ea89d491c86362b6403e1ff4144a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation models</topic><topic>Additives</topic><topic>Applied sciences</topic><topic>Audio signals</topic><topic>Composting</topic><topic>Computer Science</topic><topic>Context</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Heuristic algorithms</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>kernel method</topic><topic>Kernels</topic><topic>local regression</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>nonparametric models</topic><topic>Parametric statistics</topic><topic>Proximity</topic><topic>Separation</topic><topic>Signal and communications theory</topic><topic>Signal and Image processing</topic><topic>Signal, noise</topic><topic>Source separation</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liutkus, Antoine</creatorcontrib><creatorcontrib>Fitzgerald, Derry</creatorcontrib><creatorcontrib>Rafii, Zafar</creatorcontrib><creatorcontrib>Pardo, Bryan</creatorcontrib><creatorcontrib>Daudet, Laurent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liutkus, Antoine</au><au>Fitzgerald, Derry</au><au>Rafii, Zafar</au><au>Pardo, Bryan</au><au>Daudet, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Additive Models for Source Separation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-08-15</date><risdate>2014</risdate><volume>62</volume><issue>16</issue><spage>4298</spage><epage>4310</epage><pages>4298-4310</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Source separation consists of separating a signal into additive components. It is a topic of considerable interest with many applications that has gathered much attention recently. Here, we introduce a new framework for source separation called Kernel Additive Modelling, which is based on local regression and permits efficient separation of multidimensional and/or nonnegative and/or non-regularly sampled signals. The main idea of the method is to assume that a source at some location can be estimated using its values at other locations nearby, where nearness is defined through a source-specific proximity kernel. Such a kernel provides an efficient way to account for features like periodicity, continuity, smoothness, stability over time or frequency, and self-similarity. In many cases, such local dynamics are indeed much more natural to assess than any global model such as a tensor factorization. This framework permits one to use different proximity kernels for different sources and to separate them using the iterative kernel backfitting algorithm we describe. As we show, kernel additive modelling generalizes many recent and efficient techniques for source separation and opens the path to creating and combining source models in a principled way. Experimental results on the separation of synthetic and audio signals demonstrate the effectiveness of the approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2332434</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3458-6498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2014-08, Vol.62 (16), p.4298-4310
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1559709677
source IEEE Xplore
subjects Adaptation models
Additives
Applied sciences
Audio signals
Composting
Computer Science
Context
Detection, estimation, filtering, equalization, prediction
Engineering Sciences
Exact sciences and technology
Heuristic algorithms
Information, signal and communications theory
Kernel
kernel method
Kernels
local regression
Mathematical models
Modelling
nonparametric models
Parametric statistics
Proximity
Separation
Signal and communications theory
Signal and Image processing
Signal, noise
Source separation
Telecommunications and information theory
title Kernel Additive Models for Source Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Additive%20Models%20for%20Source%20Separation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Liutkus,%20Antoine&rft.date=2014-08-15&rft.volume=62&rft.issue=16&rft.spage=4298&rft.epage=4310&rft.pages=4298-4310&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2332434&rft_dat=%3Cproquest_RIE%3E3443565381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565533688&rft_id=info:pmid/&rft_ieee_id=6842708&rfr_iscdi=true