Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments

After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2012-10, Vol.338 (6103), p.101-105
Hauptverfasser: Chang, J. C., Lockner, D. A., Reches, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 6103
container_start_page 101
container_title Science (American Association for the Advancement of Science)
container_volume 338
creator Chang, J. C.
Lockner, D. A.
Reches, Z.
description After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (M w ) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake's rupture front quickens dynamic weakening by intense wear of the fault zone.
doi_str_mv 10.1126/science.1221195
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559699345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41704041</jstor_id><sourcerecordid>41704041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-5a1bd021135aa50dde1b7e9aca6999b1493fe54a13f53c1a338c3a05adad4c023</originalsourceid><addsrcrecordid>eNqF0d9L3EAQB_ClKPWqfe6TEpCCL9H9mcs-HnJthYAgSh_DZDPRPe82524C-t935FIFX3xa2PnssDNfxn4Ifi6ELC6S8xgcngsphbDmC5sJbk1uJVd7bMa5KvKSz80B-5bSinOqWfWVHUjFtSytnLG7G9j6Nls4h2uMMPg-ZBVCm7Khz3a1vwiPGHy4z3zIlhCHh6eRbvLKP2JWQdPTsz6-ZMvnLUa_wTCkI7bfwTrh9-k8ZHe_lreXf_Lq-vfV5aLKQVs75AZE03L6uTIAhrctimaOFhwU1tpGaKs6NBqE6oxyApQqnQJuoIVWOy7VITvb9d3G_mnENNQbn2iSNQTsx1QLYyy1Utp8Tmk3mrjhRE8_0FU_xkCDkCql1uVcWlIXO-Vin1LErt7S9BBfCNWv4dRTOPUUDr04mfqOzQbbN_8_DQI_JwDJwbqLEJxP764orJCmJHe8c6tEm3-razHnmmuh_gGLsaEX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082448729</pqid></control><display><type>article</type><title>Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Chang, J. C. ; Lockner, D. A. ; Reches, Z.</creator><creatorcontrib>Chang, J. C. ; Lockner, D. A. ; Reches, Z.</creatorcontrib><description>After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (M w ) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake's rupture front quickens dynamic weakening by intense wear of the fault zone.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1221195</identifier><identifier>PMID: 23042892</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Acceleration ; Acceleration (Education) ; Dolomite ; Earth sciences ; Earth, ocean, space ; Earthquake damage ; Earthquakes ; Earthquakes, seismology ; Energy ; Exact sciences and technology ; Extrapolation ; Faults ; Flux density ; Flywheels ; Geologic shear ; Geometric lines ; Geophysics ; Granite ; High speed ; Internal geophysics ; Laboratories ; Laboratory Experiments ; Physics ; Plate tectonics ; Seismic phenomena ; Seismology ; Shear stress ; Simulation ; Velocity</subject><ispartof>Science (American Association for the Advancement of Science), 2012-10, Vol.338 (6103), p.101-105</ispartof><rights>Copyright © 2012 American Association for the Advancement of Science</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-5a1bd021135aa50dde1b7e9aca6999b1493fe54a13f53c1a338c3a05adad4c023</citedby><cites>FETCH-LOGICAL-a499t-5a1bd021135aa50dde1b7e9aca6999b1493fe54a13f53c1a338c3a05adad4c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41704041$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41704041$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26691258$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23042892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, J. C.</creatorcontrib><creatorcontrib>Lockner, D. A.</creatorcontrib><creatorcontrib>Reches, Z.</creatorcontrib><title>Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (M w ) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake's rupture front quickens dynamic weakening by intense wear of the fault zone.</description><subject>Acceleration</subject><subject>Acceleration (Education)</subject><subject>Dolomite</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquake damage</subject><subject>Earthquakes</subject><subject>Earthquakes, seismology</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Extrapolation</subject><subject>Faults</subject><subject>Flux density</subject><subject>Flywheels</subject><subject>Geologic shear</subject><subject>Geometric lines</subject><subject>Geophysics</subject><subject>Granite</subject><subject>High speed</subject><subject>Internal geophysics</subject><subject>Laboratories</subject><subject>Laboratory Experiments</subject><subject>Physics</subject><subject>Plate tectonics</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Velocity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0d9L3EAQB_ClKPWqfe6TEpCCL9H9mcs-HnJthYAgSh_DZDPRPe82524C-t935FIFX3xa2PnssDNfxn4Ifi6ELC6S8xgcngsphbDmC5sJbk1uJVd7bMa5KvKSz80B-5bSinOqWfWVHUjFtSytnLG7G9j6Nls4h2uMMPg-ZBVCm7Khz3a1vwiPGHy4z3zIlhCHh6eRbvLKP2JWQdPTsz6-ZMvnLUa_wTCkI7bfwTrh9-k8ZHe_lreXf_Lq-vfV5aLKQVs75AZE03L6uTIAhrctimaOFhwU1tpGaKs6NBqE6oxyApQqnQJuoIVWOy7VITvb9d3G_mnENNQbn2iSNQTsx1QLYyy1Utp8Tmk3mrjhRE8_0FU_xkCDkCql1uVcWlIXO-Vin1LErt7S9BBfCNWv4dRTOPUUDr04mfqOzQbbN_8_DQI_JwDJwbqLEJxP764orJCmJHe8c6tEm3-razHnmmuh_gGLsaEX</recordid><startdate>20121005</startdate><enddate>20121005</enddate><creator>Chang, J. C.</creator><creator>Lockner, D. A.</creator><creator>Reches, Z.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SM</scope></search><sort><creationdate>20121005</creationdate><title>Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments</title><author>Chang, J. C. ; Lockner, D. A. ; Reches, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-5a1bd021135aa50dde1b7e9aca6999b1493fe54a13f53c1a338c3a05adad4c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Acceleration (Education)</topic><topic>Dolomite</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquake damage</topic><topic>Earthquakes</topic><topic>Earthquakes, seismology</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Extrapolation</topic><topic>Faults</topic><topic>Flux density</topic><topic>Flywheels</topic><topic>Geologic shear</topic><topic>Geometric lines</topic><topic>Geophysics</topic><topic>Granite</topic><topic>High speed</topic><topic>Internal geophysics</topic><topic>Laboratories</topic><topic>Laboratory Experiments</topic><topic>Physics</topic><topic>Plate tectonics</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, J. C.</creatorcontrib><creatorcontrib>Lockner, D. A.</creatorcontrib><creatorcontrib>Reches, Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, J. C.</au><au>Lockner, D. A.</au><au>Reches, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2012-10-05</date><risdate>2012</risdate><volume>338</volume><issue>6103</issue><spage>101</spage><epage>105</epage><pages>101-105</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (M w ) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake's rupture front quickens dynamic weakening by intense wear of the fault zone.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23042892</pmid><doi>10.1126/science.1221195</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2012-10, Vol.338 (6103), p.101-105
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1559699345
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Acceleration
Acceleration (Education)
Dolomite
Earth sciences
Earth, ocean, space
Earthquake damage
Earthquakes
Earthquakes, seismology
Energy
Exact sciences and technology
Extrapolation
Faults
Flux density
Flywheels
Geologic shear
Geometric lines
Geophysics
Granite
High speed
Internal geophysics
Laboratories
Laboratory Experiments
Physics
Plate tectonics
Seismic phenomena
Seismology
Shear stress
Simulation
Velocity
title Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Acceleration%20Leads%20to%20Rapid%20Weakening%20in%20Earthquake-Like%20Laboratory%20Experiments&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chang,%20J.%20C.&rft.date=2012-10-05&rft.volume=338&rft.issue=6103&rft.spage=101&rft.epage=105&rft.pages=101-105&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1221195&rft_dat=%3Cjstor_proqu%3E41704041%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082448729&rft_id=info:pmid/23042892&rft_jstor_id=41704041&rfr_iscdi=true