Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer

We consider a point-to-point multiple-input-single-output (MISO) system where a receiver harvests energy from a transmitter. To achieve high-efficiency wireless power transfer (WPT), the transmitter performs energy beamforming by using an instantaneous channel state information (CSI). The CSI is est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-07, Vol.62 (14), p.3565-3577
Hauptverfasser: Yang, Gang, Ho, Chin Keong, Guan, Yong Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3577
container_issue 14
container_start_page 3565
container_title IEEE transactions on signal processing
container_volume 62
creator Yang, Gang
Ho, Chin Keong
Guan, Yong Liang
description We consider a point-to-point multiple-input-single-output (MISO) system where a receiver harvests energy from a transmitter. To achieve high-efficiency wireless power transfer (WPT), the transmitter performs energy beamforming by using an instantaneous channel state information (CSI). The CSI is estimated at the receiver by training via a preamble and fed back to the transmitter. In this paper, we address the key challenge of balancing the time resource used for channel estimation and WPT to maximize the harvested energy and also investigate the allocation of energy resource used for WPT. First, we consider the general scenario where the preamble length is allowed to vary dynamically depending on channel conditions. The optimal preamble length is obtained online by solving a dynamic programming (DP) problem. The DP problem is proved to reduce to an optimal stopping problem. The optimal policy is then shown to depend only on the channel estimate power. Next, we consider the scenario in which the preamble length is fixed by an offline optimization. Furthermore, we derive the optimal power allocation schemes. For the dynamic-length-preamble scenario, the power is allocated according to both the optimal preamble length and the channel estimate power, while for the fixed-length-preamble scenario, the power is allocated according to only the channel estimate power. By numerical simulations, our results show that with optimal power allocation, the energy harvested by using the optimized fixed-length preamble is close to that harvested by using a dynamic-length preamble, hence allowing a low-complexity yet close-to-optimal WPT system to be implemented in practice.
doi_str_mv 10.1109/TSP.2014.2328980
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559698656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6825867</ieee_id><sourcerecordid>1559698656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-d03ee099013505ccf6c49f144d1aaa3dad5b693feda24aef7ae679e1a796ecfb3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRsFbvgpeACF5Sd7OPZI-lPipULFrRW5huZiFlm9TdBOm_d0uLB08zMN-8PkIuGR0xRvXd4n0-yigTo4xnhS7oERkwLVhKRa6OY04lT2WRf52SsxBWNJJCqwGZ3m8bWNcmecPQ9t5gMnauNdDVbZPY1icvvevqjcN03HTYNJB81h4dhpDM2x_0ycJDEyz6c3JiwQW8OMQh-Xh8WEym6ez16XkynqVGCN6lFeWIVGvKuKTSGKuM0DYeUzEA4BVUcqk0t1hBJgBtDqhyjQxyrdDYJR-S2_3cjW-_ewxdua6DQeegwbYPJZNSK10oqSJ6_Q9dxRebeF2klJScU5VHiu4p49sQPNpy4-s1-G3JaLlTW0a15U5teVAbW24OgyEYcDYqMHX468uKPGO5EpG72nM1Iv6VVZHJIi7-BSWYgjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565533067</pqid></control><display><type>article</type><title>Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Gang ; Ho, Chin Keong ; Guan, Yong Liang</creator><creatorcontrib>Yang, Gang ; Ho, Chin Keong ; Guan, Yong Liang</creatorcontrib><description>We consider a point-to-point multiple-input-single-output (MISO) system where a receiver harvests energy from a transmitter. To achieve high-efficiency wireless power transfer (WPT), the transmitter performs energy beamforming by using an instantaneous channel state information (CSI). The CSI is estimated at the receiver by training via a preamble and fed back to the transmitter. In this paper, we address the key challenge of balancing the time resource used for channel estimation and WPT to maximize the harvested energy and also investigate the allocation of energy resource used for WPT. First, we consider the general scenario where the preamble length is allowed to vary dynamically depending on channel conditions. The optimal preamble length is obtained online by solving a dynamic programming (DP) problem. The DP problem is proved to reduce to an optimal stopping problem. The optimal policy is then shown to depend only on the channel estimate power. Next, we consider the scenario in which the preamble length is fixed by an offline optimization. Furthermore, we derive the optimal power allocation schemes. For the dynamic-length-preamble scenario, the power is allocated according to both the optimal preamble length and the channel estimate power, while for the fixed-length-preamble scenario, the power is allocated according to only the channel estimate power. By numerical simulations, our results show that with optimal power allocation, the energy harvested by using the optimized fixed-length preamble is close to that harvested by using a dynamic-length preamble, hence allowing a low-complexity yet close-to-optimal WPT system to be implemented in practice.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2328980</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Allocations ; Applied sciences ; Array signal processing ; Channel estimation ; Channels ; Codes ; Communication channels ; Detection, estimation, filtering, equalization, prediction ; dynamic channel estimation ; Dynamic programming ; Dynamical systems ; Dynamics ; energy beamforming ; Energy use ; Estimates ; Exact sciences and technology ; Information, signal and communications theory ; Optimization ; power allocation ; Receivers ; resource allocation ; Resource management ; Signal and communications theory ; Signal, noise ; Telecommunications and information theory ; Transmitters ; Vectors ; Wireless communication ; Wireless power transfer</subject><ispartof>IEEE transactions on signal processing, 2014-07, Vol.62 (14), p.3565-3577</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-d03ee099013505ccf6c49f144d1aaa3dad5b693feda24aef7ae679e1a796ecfb3</citedby><cites>FETCH-LOGICAL-c443t-d03ee099013505ccf6c49f144d1aaa3dad5b693feda24aef7ae679e1a796ecfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6825867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6825867$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28721764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Ho, Chin Keong</creatorcontrib><creatorcontrib>Guan, Yong Liang</creatorcontrib><title>Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We consider a point-to-point multiple-input-single-output (MISO) system where a receiver harvests energy from a transmitter. To achieve high-efficiency wireless power transfer (WPT), the transmitter performs energy beamforming by using an instantaneous channel state information (CSI). The CSI is estimated at the receiver by training via a preamble and fed back to the transmitter. In this paper, we address the key challenge of balancing the time resource used for channel estimation and WPT to maximize the harvested energy and also investigate the allocation of energy resource used for WPT. First, we consider the general scenario where the preamble length is allowed to vary dynamically depending on channel conditions. The optimal preamble length is obtained online by solving a dynamic programming (DP) problem. The DP problem is proved to reduce to an optimal stopping problem. The optimal policy is then shown to depend only on the channel estimate power. Next, we consider the scenario in which the preamble length is fixed by an offline optimization. Furthermore, we derive the optimal power allocation schemes. For the dynamic-length-preamble scenario, the power is allocated according to both the optimal preamble length and the channel estimate power, while for the fixed-length-preamble scenario, the power is allocated according to only the channel estimate power. By numerical simulations, our results show that with optimal power allocation, the energy harvested by using the optimized fixed-length preamble is close to that harvested by using a dynamic-length preamble, hence allowing a low-complexity yet close-to-optimal WPT system to be implemented in practice.</description><subject>Allocations</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Codes</subject><subject>Communication channels</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>dynamic channel estimation</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>energy beamforming</subject><subject>Energy use</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Optimization</subject><subject>power allocation</subject><subject>Receivers</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Transmitters</subject><subject>Vectors</subject><subject>Wireless communication</subject><subject>Wireless power transfer</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRsFbvgpeACF5Sd7OPZI-lPipULFrRW5huZiFlm9TdBOm_d0uLB08zMN-8PkIuGR0xRvXd4n0-yigTo4xnhS7oERkwLVhKRa6OY04lT2WRf52SsxBWNJJCqwGZ3m8bWNcmecPQ9t5gMnauNdDVbZPY1icvvevqjcN03HTYNJB81h4dhpDM2x_0ycJDEyz6c3JiwQW8OMQh-Xh8WEym6ez16XkynqVGCN6lFeWIVGvKuKTSGKuM0DYeUzEA4BVUcqk0t1hBJgBtDqhyjQxyrdDYJR-S2_3cjW-_ewxdua6DQeegwbYPJZNSK10oqSJ6_Q9dxRebeF2klJScU5VHiu4p49sQPNpy4-s1-G3JaLlTW0a15U5teVAbW24OgyEYcDYqMHX468uKPGO5EpG72nM1Iv6VVZHJIi7-BSWYgjI</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Yang, Gang</creator><creator>Ho, Chin Keong</creator><creator>Guan, Yong Liang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140715</creationdate><title>Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer</title><author>Yang, Gang ; Ho, Chin Keong ; Guan, Yong Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-d03ee099013505ccf6c49f144d1aaa3dad5b693feda24aef7ae679e1a796ecfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allocations</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Codes</topic><topic>Communication channels</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>dynamic channel estimation</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>energy beamforming</topic><topic>Energy use</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Optimization</topic><topic>power allocation</topic><topic>Receivers</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Transmitters</topic><topic>Vectors</topic><topic>Wireless communication</topic><topic>Wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Ho, Chin Keong</creatorcontrib><creatorcontrib>Guan, Yong Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Gang</au><au>Ho, Chin Keong</au><au>Guan, Yong Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-07-15</date><risdate>2014</risdate><volume>62</volume><issue>14</issue><spage>3565</spage><epage>3577</epage><pages>3565-3577</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We consider a point-to-point multiple-input-single-output (MISO) system where a receiver harvests energy from a transmitter. To achieve high-efficiency wireless power transfer (WPT), the transmitter performs energy beamforming by using an instantaneous channel state information (CSI). The CSI is estimated at the receiver by training via a preamble and fed back to the transmitter. In this paper, we address the key challenge of balancing the time resource used for channel estimation and WPT to maximize the harvested energy and also investigate the allocation of energy resource used for WPT. First, we consider the general scenario where the preamble length is allowed to vary dynamically depending on channel conditions. The optimal preamble length is obtained online by solving a dynamic programming (DP) problem. The DP problem is proved to reduce to an optimal stopping problem. The optimal policy is then shown to depend only on the channel estimate power. Next, we consider the scenario in which the preamble length is fixed by an offline optimization. Furthermore, we derive the optimal power allocation schemes. For the dynamic-length-preamble scenario, the power is allocated according to both the optimal preamble length and the channel estimate power, while for the fixed-length-preamble scenario, the power is allocated according to only the channel estimate power. By numerical simulations, our results show that with optimal power allocation, the energy harvested by using the optimized fixed-length preamble is close to that harvested by using a dynamic-length preamble, hence allowing a low-complexity yet close-to-optimal WPT system to be implemented in practice.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2328980</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2014-07, Vol.62 (14), p.3565-3577
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1559698656
source IEEE Electronic Library (IEL)
subjects Allocations
Applied sciences
Array signal processing
Channel estimation
Channels
Codes
Communication channels
Detection, estimation, filtering, equalization, prediction
dynamic channel estimation
Dynamic programming
Dynamical systems
Dynamics
energy beamforming
Energy use
Estimates
Exact sciences and technology
Information, signal and communications theory
Optimization
power allocation
Receivers
resource allocation
Resource management
Signal and communications theory
Signal, noise
Telecommunications and information theory
Transmitters
Vectors
Wireless communication
Wireless power transfer
title Dynamic Resource Allocation for Multiple-Antenna Wireless Power Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Resource%20Allocation%20for%20Multiple-Antenna%20Wireless%20Power%20Transfer&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yang,%20Gang&rft.date=2014-07-15&rft.volume=62&rft.issue=14&rft.spage=3565&rft.epage=3577&rft.pages=3565-3577&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2328980&rft_dat=%3Cproquest_RIE%3E1559698656%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1565533067&rft_id=info:pmid/&rft_ieee_id=6825867&rfr_iscdi=true