A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction unde...
Gespeichert in:
Veröffentlicht in: | International journal of electrical power & energy systems 2014-11, Vol.62, p.862-867 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | |
container_start_page | 862 |
container_title | International journal of electrical power & energy systems |
container_volume | 62 |
creator | Kouhi, Sajjad Keynia, Farshid Najafi Ravadanegh, Sajad |
description | •A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features.
In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques. |
doi_str_mv | 10.1016/j.ijepes.2014.05.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559694957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014206151400307X</els_id><sourcerecordid>1559694957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123</originalsourceid><addsrcrecordid>eNp9kD1P5DAQhi10SOwB_4DCDRJNcrYTO-sGCSG-JKRr7mprYk9Yr5J4sR0Q_x6vFlFSTTHPO6_mIeSCs5ozrv5sa7_FHaZaMN7WTNasUUdkxdedrhrJu19kVRaiYorLE_I7pS1jrNOtWBF_Q2d8p2kTYq4yxomOARwdQkQLKdMJ8yY42kNCR8Nc4CWGCt_CuGQfZogfFMaXEH3eTBRmR-0GQvaWDgh5iUgTjmj36Bk5HmBMeP41T8n_-7t_t4_V89-Hp9ub58o2SudKOdUj6I4Bqkaotu9R9I71oB2updJCIncC-r5rRUkAgJNWq4FrxVvORXNKrg53dzG8LpiymXyyOI4wY1iS4VJqpVstu4K2B9TGkFLEweyin8pPhjOzN2u25mDW7M0aJk0xW2KXXw2QLIxDhNn69J0Va8WF0Lxw1wcOy7tvHqNJ1uNs0fliNxsX_M9Fnwc5ksE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559694957</pqid></control><display><type>article</type><title>A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kouhi, Sajjad ; Keynia, Farshid ; Najafi Ravadanegh, Sajad</creator><creatorcontrib>Kouhi, Sajjad ; Keynia, Farshid ; Najafi Ravadanegh, Sajad</creatorcontrib><description>•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features.
In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.</description><identifier>ISSN: 0142-0615</identifier><identifier>EISSN: 1879-3517</identifier><identifier>DOI: 10.1016/j.ijepes.2014.05.036</identifier><identifier>CODEN: IEPSDC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Chaos theory ; Chaotic time series ; Differential Evolutionary ; Electric power generation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electricity ; Electricity consumption ; Exact sciences and technology ; Feature selection ; Forecasting ; Markets ; Miscellaneous ; Neural network ; Neural networks ; Operation. Load control. Reliability ; Power networks and lines ; Reconstructed phase space ; Short-term load forecast</subject><ispartof>International journal of electrical power & energy systems, 2014-11, Vol.62, p.862-867</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123</citedby><cites>FETCH-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijepes.2014.05.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28612291$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouhi, Sajjad</creatorcontrib><creatorcontrib>Keynia, Farshid</creatorcontrib><creatorcontrib>Najafi Ravadanegh, Sajad</creatorcontrib><title>A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection</title><title>International journal of electrical power & energy systems</title><description>•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features.
In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Chaos theory</subject><subject>Chaotic time series</subject><subject>Differential Evolutionary</subject><subject>Electric power generation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Exact sciences and technology</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Markets</subject><subject>Miscellaneous</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Operation. Load control. Reliability</subject><subject>Power networks and lines</subject><subject>Reconstructed phase space</subject><subject>Short-term load forecast</subject><issn>0142-0615</issn><issn>1879-3517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1P5DAQhi10SOwB_4DCDRJNcrYTO-sGCSG-JKRr7mprYk9Yr5J4sR0Q_x6vFlFSTTHPO6_mIeSCs5ozrv5sa7_FHaZaMN7WTNasUUdkxdedrhrJu19kVRaiYorLE_I7pS1jrNOtWBF_Q2d8p2kTYq4yxomOARwdQkQLKdMJ8yY42kNCR8Nc4CWGCt_CuGQfZogfFMaXEH3eTBRmR-0GQvaWDgh5iUgTjmj36Bk5HmBMeP41T8n_-7t_t4_V89-Hp9ub58o2SudKOdUj6I4Bqkaotu9R9I71oB2updJCIncC-r5rRUkAgJNWq4FrxVvORXNKrg53dzG8LpiymXyyOI4wY1iS4VJqpVstu4K2B9TGkFLEweyin8pPhjOzN2u25mDW7M0aJk0xW2KXXw2QLIxDhNn69J0Va8WF0Lxw1wcOy7tvHqNJ1uNs0fliNxsX_M9Fnwc5ksE</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Kouhi, Sajjad</creator><creator>Keynia, Farshid</creator><creator>Najafi Ravadanegh, Sajad</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection</title><author>Kouhi, Sajjad ; Keynia, Farshid ; Najafi Ravadanegh, Sajad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6d6bea970ae63264bbe2bd0ba9de856925e1d2abb742c36aaad5c96f196141123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Chaos theory</topic><topic>Chaotic time series</topic><topic>Differential Evolutionary</topic><topic>Electric power generation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Exact sciences and technology</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Markets</topic><topic>Miscellaneous</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Operation. Load control. Reliability</topic><topic>Power networks and lines</topic><topic>Reconstructed phase space</topic><topic>Short-term load forecast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouhi, Sajjad</creatorcontrib><creatorcontrib>Keynia, Farshid</creatorcontrib><creatorcontrib>Najafi Ravadanegh, Sajad</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electrical power & energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouhi, Sajjad</au><au>Keynia, Farshid</au><au>Najafi Ravadanegh, Sajad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection</atitle><jtitle>International journal of electrical power & energy systems</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>62</volume><spage>862</spage><epage>867</epage><pages>862-867</pages><issn>0142-0615</issn><eissn>1879-3517</eissn><coden>IEPSDC</coden><abstract>•A new hybrid neuro-evolutionary algorithm method is proposed for short-term load forecasting.•Neural network’s weights and biases are best tuned by using Differential Evolutionary (DE) algorithm.•A new chaotic feature selection is proposed for designing input vector.•Phase space reconstruction under Taken’s embedding theorem is used in preparing candidate features.
In competitive environment of deregulated electricity market, short-term load forecasting (STLF) is a major discussion for efficient operation of power systems. Therefore, the area of electricity load forecasting is still essential need for more accurate and stable load forecast algorithm. However, the electricity load is a non-linear signal with high degree of volatility. In this paper, a new forecasted method based on neural network (NN) and chaotic intelligent feature selection is presented. The proposed feature selection method selects the best set of candidate input which is used as input data for the forecasted. The theory of phase space reconstruction under Taken’s embedding theorem is used to prepare candidate features. Then, candidate inputs relevance to target value are measured by using correlation analysis. Forecast engine is a multilayer perception layer (MLP) NN with hybrid Levenberg–Marquardt (LM) and Differential Evolutionary (DE) learning algorithm. The proposed STLF is tested on PJM and New England electricity markets and compared with some of recent STLF techniques.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijepes.2014.05.036</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-0615 |
ispartof | International journal of electrical power & energy systems, 2014-11, Vol.62, p.862-867 |
issn | 0142-0615 1879-3517 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559694957 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Applied sciences Chaos theory Chaotic time series Differential Evolutionary Electric power generation Electrical engineering. Electrical power engineering Electrical power engineering Electricity Electricity consumption Exact sciences and technology Feature selection Forecasting Markets Miscellaneous Neural network Neural networks Operation. Load control. Reliability Power networks and lines Reconstructed phase space Short-term load forecast |
title | A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20short-term%20load%20forecast%20method%20based%20on%20neuro-evolutionary%20algorithm%20and%20chaotic%20feature%20selection&rft.jtitle=International%20journal%20of%20electrical%20power%20&%20energy%20systems&rft.au=Kouhi,%20Sajjad&rft.date=2014-11-01&rft.volume=62&rft.spage=862&rft.epage=867&rft.pages=862-867&rft.issn=0142-0615&rft.eissn=1879-3517&rft.coden=IEPSDC&rft_id=info:doi/10.1016/j.ijepes.2014.05.036&rft_dat=%3Cproquest_cross%3E1559694957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559694957&rft_id=info:pmid/&rft_els_id=S014206151400307X&rfr_iscdi=true |