Forbidden transitions in Markovian systems

An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2012-10, Vol.105 (4), p.730-756
1. Verfasser: Kingman, J. F. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 756
container_issue 4
container_start_page 730
container_title Proceedings of the London Mathematical Society
container_volume 105
creator Kingman, J. F. C.
description An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.
doi_str_mv 10.1112/plms/pds021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559692991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559692991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2660-c061d8cd438c9366e296e77f46884c841b9293ef4c9baf39cb2474f5da0dfa7f3</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgCs7pyTfQoyh1eZI0bY4ynAobCip4C2maQLT_zNM59u7tqGdPz-XD74EvIZdAbwGALfq6wUVfIWVwRGYgJE2ZEB_HZEYpE6kEyE7JGeInpVRyns3I9aqLZagq1yZDNC2GIXQtJqFNNiZ-dT_BtAnucXANnpMTb2p0F393Tt5X92_Lx3T9_PC0vFunlsnxoaUSqsJWghdWcSkdU9LluReyKIQtBJSKKe68sKo0nitbMpELn1WGVt7kns_J1bTbx-5763DQTUDr6tq0rtuihixTctxQMNKbidrYIUbndR9DY-JeA9WHIvpQRE9FRg2T3oXa7f-j-mW9eaU5p_wXcqRlNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559692991</pqid></control><display><type>article</type><title>Forbidden transitions in Markovian systems</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Kingman, J. F. C.</creator><creatorcontrib>Kingman, J. F. C.</creatorcontrib><description>An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pds021</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Codification ; Dichotomies ; Forbidden transitions ; Infinity ; Invariants ; Markov processes ; Mathematical analysis ; Transition probabilities</subject><ispartof>Proceedings of the London Mathematical Society, 2012-10, Vol.105 (4), p.730-756</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpds021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpds021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kingman, J. F. C.</creatorcontrib><title>Forbidden transitions in Markovian systems</title><title>Proceedings of the London Mathematical Society</title><description>An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.</description><subject>Codification</subject><subject>Dichotomies</subject><subject>Forbidden transitions</subject><subject>Infinity</subject><subject>Invariants</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Transition probabilities</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYx_EgCs7pyTfQoyh1eZI0bY4ynAobCip4C2maQLT_zNM59u7tqGdPz-XD74EvIZdAbwGALfq6wUVfIWVwRGYgJE2ZEB_HZEYpE6kEyE7JGeInpVRyns3I9aqLZagq1yZDNC2GIXQtJqFNNiZ-dT_BtAnucXANnpMTb2p0F393Tt5X92_Lx3T9_PC0vFunlsnxoaUSqsJWghdWcSkdU9LluReyKIQtBJSKKe68sKo0nitbMpELn1WGVt7kns_J1bTbx-5763DQTUDr6tq0rtuihixTctxQMNKbidrYIUbndR9DY-JeA9WHIvpQRE9FRg2T3oXa7f-j-mW9eaU5p_wXcqRlNg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kingman, J. F. C.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Forbidden transitions in Markovian systems</title><author>Kingman, J. F. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2660-c061d8cd438c9366e296e77f46884c841b9293ef4c9baf39cb2474f5da0dfa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Codification</topic><topic>Dichotomies</topic><topic>Forbidden transitions</topic><topic>Infinity</topic><topic>Invariants</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingman, J. F. C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingman, J. F. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forbidden transitions in Markovian systems</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2012-10</date><risdate>2012</risdate><volume>105</volume><issue>4</issue><spage>730</spage><epage>756</epage><pages>730-756</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pds021</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2012-10, Vol.105 (4), p.730-756
issn 0024-6115
1460-244X
language eng
recordid cdi_proquest_miscellaneous_1559692991
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects Codification
Dichotomies
Forbidden transitions
Infinity
Invariants
Markov processes
Mathematical analysis
Transition probabilities
title Forbidden transitions in Markovian systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forbidden%20transitions%20in%20Markovian%20systems&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Kingman,%20J.%20F.%20C.&rft.date=2012-10&rft.volume=105&rft.issue=4&rft.spage=730&rft.epage=756&rft.pages=730-756&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pds021&rft_dat=%3Cproquest_cross%3E1559692991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559692991&rft_id=info:pmid/&rfr_iscdi=true