Forbidden transitions in Markovian systems
An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper consider...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2012-10, Vol.105 (4), p.730-756 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 756 |
---|---|
container_issue | 4 |
container_start_page | 730 |
container_title | Proceedings of the London Mathematical Society |
container_volume | 105 |
creator | Kingman, J. F. C. |
description | An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open. |
doi_str_mv | 10.1112/plms/pds021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559692991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559692991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2660-c061d8cd438c9366e296e77f46884c841b9293ef4c9baf39cb2474f5da0dfa7f3</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgCs7pyTfQoyh1eZI0bY4ynAobCip4C2maQLT_zNM59u7tqGdPz-XD74EvIZdAbwGALfq6wUVfIWVwRGYgJE2ZEB_HZEYpE6kEyE7JGeInpVRyns3I9aqLZagq1yZDNC2GIXQtJqFNNiZ-dT_BtAnucXANnpMTb2p0F393Tt5X92_Lx3T9_PC0vFunlsnxoaUSqsJWghdWcSkdU9LluReyKIQtBJSKKe68sKo0nitbMpELn1WGVt7kns_J1bTbx-5763DQTUDr6tq0rtuihixTctxQMNKbidrYIUbndR9DY-JeA9WHIvpQRE9FRg2T3oXa7f-j-mW9eaU5p_wXcqRlNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559692991</pqid></control><display><type>article</type><title>Forbidden transitions in Markovian systems</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Kingman, J. F. C.</creator><creatorcontrib>Kingman, J. F. C.</creatorcontrib><description>An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pds021</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Codification ; Dichotomies ; Forbidden transitions ; Infinity ; Invariants ; Markov processes ; Mathematical analysis ; Transition probabilities</subject><ispartof>Proceedings of the London Mathematical Society, 2012-10, Vol.105 (4), p.730-756</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpds021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpds021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kingman, J. F. C.</creatorcontrib><title>Forbidden transitions in Markovian systems</title><title>Proceedings of the London Mathematical Society</title><description>An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.</description><subject>Codification</subject><subject>Dichotomies</subject><subject>Forbidden transitions</subject><subject>Infinity</subject><subject>Invariants</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Transition probabilities</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYx_EgCs7pyTfQoyh1eZI0bY4ynAobCip4C2maQLT_zNM59u7tqGdPz-XD74EvIZdAbwGALfq6wUVfIWVwRGYgJE2ZEB_HZEYpE6kEyE7JGeInpVRyns3I9aqLZagq1yZDNC2GIXQtJqFNNiZ-dT_BtAnucXANnpMTb2p0F393Tt5X92_Lx3T9_PC0vFunlsnxoaUSqsJWghdWcSkdU9LluReyKIQtBJSKKe68sKo0nitbMpELn1WGVt7kns_J1bTbx-5763DQTUDr6tq0rtuihixTctxQMNKbidrYIUbndR9DY-JeA9WHIvpQRE9FRg2T3oXa7f-j-mW9eaU5p_wXcqRlNg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kingman, J. F. C.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Forbidden transitions in Markovian systems</title><author>Kingman, J. F. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2660-c061d8cd438c9366e296e77f46884c841b9293ef4c9baf39cb2474f5da0dfa7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Codification</topic><topic>Dichotomies</topic><topic>Forbidden transitions</topic><topic>Infinity</topic><topic>Invariants</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingman, J. F. C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingman, J. F. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forbidden transitions in Markovian systems</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2012-10</date><risdate>2012</risdate><volume>105</volume><issue>4</issue><spage>730</spage><epage>756</epage><pages>730-756</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>An important result in the theory of Markov chains in continuous time is the Lévy dichotomy, that a transition probability is either always or never zero. This was proved by Ornstein for autonomous chains, in which the transition probabilities are invariant under time shifts, and this paper considers the situation when this invariance is not assumed. The problem was solved for finite chains in joint work with David Williams in 1973, but the case of a countable infinity of states is much deeper. By analysing the family of relations on the state space that codify the zeros of the transition probabilities, it proves possible to develop a general theory that generalizes Ornstein's theorem, though many questions remain open.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pds021</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2012-10, Vol.105 (4), p.730-756 |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_proquest_miscellaneous_1559692991 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Codification Dichotomies Forbidden transitions Infinity Invariants Markov processes Mathematical analysis Transition probabilities |
title | Forbidden transitions in Markovian systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forbidden%20transitions%20in%20Markovian%20systems&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Kingman,%20J.%20F.%20C.&rft.date=2012-10&rft.volume=105&rft.issue=4&rft.spage=730&rft.epage=756&rft.pages=730-756&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pds021&rft_dat=%3Cproquest_cross%3E1559692991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559692991&rft_id=info:pmid/&rfr_iscdi=true |