Estimation of link-dependent parameters in optical transport networks from statistical models

Estimation of link-dependent parameters of optical transport networks is quite complex without the availability of complete network information. However, at the network planning stage these estimations are to be done with incomplete information, and need to be accurate. In this paper, we provide eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2014-07, Vol.6 (7), p.601-609
Hauptverfasser: Routray, Sudhir, Sahin, Gokhan, da Rocha, Jose, Pinto, Armando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 609
container_issue 7
container_start_page 601
container_title Journal of optical communications and networking
container_volume 6
creator Routray, Sudhir
Sahin, Gokhan
da Rocha, Jose
Pinto, Armando
description Estimation of link-dependent parameters of optical transport networks is quite complex without the availability of complete network information. However, at the network planning stage these estimations are to be done with incomplete information, and need to be accurate. In this paper, we provide effective methods to estimate link-dependent parameters of optical transport networks when only partial information about the network is available. We use the link length statistical distribution model for these estimations. This approach is applied to 40 real transport networks and shown to be more accurate than the previously proposed methods. The improved accuracy of the proposed methods is achieved without extra network details: only the network node locations and the total number of links are needed.
doi_str_mv 10.1109/JOCN.2014.6850201
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559689451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3378341731</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-34e547499a235679fb0d2c667cb2cba50f9cc00ebfb7a2ff8ee78c95e5eedae23</originalsourceid><addsrcrecordid>eNpdjk9LwzAchoMoOKcfwFvAi5fO_G9zlDKnMtxFjzLS9Bfo1iY1SfHrW5h48PQ-8D68vAjdUrKilOiH1139tmKEipWqJJnhDC2oFrwgiuvzP2bkEl2ldCBElZTKBfpcp9wNJnfB4-Bw3_lj0cIIvgWf8WiiGSBDTLib-zF31vQ4R-PTGGLGHvJ3iMeEXQwDTnneSSdnCC306RpdONMnuPnNJfp4Wr_Xz8V2t3mpH7fFSDnNBRcgRSm0NoxLVWrXkJZZpUrbMNsYSZy2lhBoXFMa5lwFUFZWS5AArQHGl-j-tDvG8DVByvuhSxb63ngIU9pTKbWqtJB0Vu_-qYcwRT-_my2hqKCaSf4DUWVmjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546141925</pqid></control><display><type>article</type><title>Estimation of link-dependent parameters in optical transport networks from statistical models</title><source>IEEE Electronic Library (IEL)</source><creator>Routray, Sudhir ; Sahin, Gokhan ; da Rocha, Jose ; Pinto, Armando</creator><creatorcontrib>Routray, Sudhir ; Sahin, Gokhan ; da Rocha, Jose ; Pinto, Armando</creatorcontrib><description>Estimation of link-dependent parameters of optical transport networks is quite complex without the availability of complete network information. However, at the network planning stage these estimations are to be done with incomplete information, and need to be accurate. In this paper, we provide effective methods to estimate link-dependent parameters of optical transport networks when only partial information about the network is available. We use the link length statistical distribution model for these estimations. This approach is applied to 40 real transport networks and shown to be more accurate than the previously proposed methods. The improved accuracy of the proposed methods is achieved without extra network details: only the network node locations and the total number of links are needed.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1109/JOCN.2014.6850201</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Availability ; Estimates ; Links ; Mathematical models ; Networks ; Statistical analysis ; Statistical distributions ; Transportation networks</subject><ispartof>Journal of optical communications and networking, 2014-07, Vol.6 (7), p.601-609</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Routray, Sudhir</creatorcontrib><creatorcontrib>Sahin, Gokhan</creatorcontrib><creatorcontrib>da Rocha, Jose</creatorcontrib><creatorcontrib>Pinto, Armando</creatorcontrib><title>Estimation of link-dependent parameters in optical transport networks from statistical models</title><title>Journal of optical communications and networking</title><description>Estimation of link-dependent parameters of optical transport networks is quite complex without the availability of complete network information. However, at the network planning stage these estimations are to be done with incomplete information, and need to be accurate. In this paper, we provide effective methods to estimate link-dependent parameters of optical transport networks when only partial information about the network is available. We use the link length statistical distribution model for these estimations. This approach is applied to 40 real transport networks and shown to be more accurate than the previously proposed methods. The improved accuracy of the proposed methods is achieved without extra network details: only the network node locations and the total number of links are needed.</description><subject>Availability</subject><subject>Estimates</subject><subject>Links</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Transportation networks</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdjk9LwzAchoMoOKcfwFvAi5fO_G9zlDKnMtxFjzLS9Bfo1iY1SfHrW5h48PQ-8D68vAjdUrKilOiH1139tmKEipWqJJnhDC2oFrwgiuvzP2bkEl2ldCBElZTKBfpcp9wNJnfB4-Bw3_lj0cIIvgWf8WiiGSBDTLib-zF31vQ4R-PTGGLGHvJ3iMeEXQwDTnneSSdnCC306RpdONMnuPnNJfp4Wr_Xz8V2t3mpH7fFSDnNBRcgRSm0NoxLVWrXkJZZpUrbMNsYSZy2lhBoXFMa5lwFUFZWS5AArQHGl-j-tDvG8DVByvuhSxb63ngIU9pTKbWqtJB0Vu_-qYcwRT-_my2hqKCaSf4DUWVmjA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Routray, Sudhir</creator><creator>Sahin, Gokhan</creator><creator>da Rocha, Jose</creator><creator>Pinto, Armando</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>Estimation of link-dependent parameters in optical transport networks from statistical models</title><author>Routray, Sudhir ; Sahin, Gokhan ; da Rocha, Jose ; Pinto, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-34e547499a235679fb0d2c667cb2cba50f9cc00ebfb7a2ff8ee78c95e5eedae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Availability</topic><topic>Estimates</topic><topic>Links</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Routray, Sudhir</creatorcontrib><creatorcontrib>Sahin, Gokhan</creatorcontrib><creatorcontrib>da Rocha, Jose</creatorcontrib><creatorcontrib>Pinto, Armando</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Routray, Sudhir</au><au>Sahin, Gokhan</au><au>da Rocha, Jose</au><au>Pinto, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of link-dependent parameters in optical transport networks from statistical models</atitle><jtitle>Journal of optical communications and networking</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>6</volume><issue>7</issue><spage>601</spage><epage>609</epage><pages>601-609</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><abstract>Estimation of link-dependent parameters of optical transport networks is quite complex without the availability of complete network information. However, at the network planning stage these estimations are to be done with incomplete information, and need to be accurate. In this paper, we provide effective methods to estimate link-dependent parameters of optical transport networks when only partial information about the network is available. We use the link length statistical distribution model for these estimations. This approach is applied to 40 real transport networks and shown to be more accurate than the previously proposed methods. The improved accuracy of the proposed methods is achieved without extra network details: only the network node locations and the total number of links are needed.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JOCN.2014.6850201</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2014-07, Vol.6 (7), p.601-609
issn 1943-0620
1943-0639
language eng
recordid cdi_proquest_miscellaneous_1559689451
source IEEE Electronic Library (IEL)
subjects Availability
Estimates
Links
Mathematical models
Networks
Statistical analysis
Statistical distributions
Transportation networks
title Estimation of link-dependent parameters in optical transport networks from statistical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20link-dependent%20parameters%20in%20optical%20transport%20networks%20from%20statistical%20models&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Routray,%20Sudhir&rft.date=2014-07-01&rft.volume=6&rft.issue=7&rft.spage=601&rft.epage=609&rft.pages=601-609&rft.issn=1943-0620&rft.eissn=1943-0639&rft_id=info:doi/10.1109/JOCN.2014.6850201&rft_dat=%3Cproquest%3E3378341731%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546141925&rft_id=info:pmid/&rfr_iscdi=true