A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells

A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric sla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2014, Vol.13, p.1279-1283
Hauptverfasser: Hosseini, Mehdi, Klymyshyn, David M., Wells, Garth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue
container_start_page 1279
container_title IEEE antennas and wireless propagation letters
container_volume 13
creator Hosseini, Mehdi
Klymyshyn, David M.
Wells, Garth
description A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.
doi_str_mv 10.1109/LAWP.2014.2333752
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559689446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6845316</ieee_id><sourcerecordid>3382201231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoqNUfIG4CbtxMTSavmWWt9QEVRS1dDmnmjo1MMzXJgPrrTWlx4erexXcOhw-hM0qGlJLyajqaPw9zQvkwZ4wpke-hIyp4kQkl1P7mZzKjeS4O0XEIH4RQJQU7QosRHltvehvxY1dDi5vO47gEfAPBvjvcNfgV2iabfBkbocaT6zv8AqFzOiZw5CI4pwOe27jEj9ZZHXtvfxI4c6lyDG0bTtBBo9sAp7s7QLPbydv4Pps-3T2MR9PMsFzGTKoGaqN0vZDAioJTwk1eKkUVLxdEMi5ZDVAWouEajDSkFNCUWksmixpyygboctu79t1nDyFWKxtMWqAddH2oqBClLEqeigbo4h_60fXepXWJ4qqgXBCWKLqljO9C8NBUa29X2n9XlFQb69XGerWxXu2sp8z5NmMB4I-XBReMSvYLsS98Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547814503</pqid></control><display><type>article</type><title>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Hosseini, Mehdi ; Klymyshyn, David M. ; Wells, Garth</creator><creatorcontrib>Hosseini, Mehdi ; Klymyshyn, David M. ; Wells, Garth</creatorcontrib><description>A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2014.2333752</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna miniaturization ; Antenna radiation patterns ; Antennas ; Bloch ; Capacitance ; Circuit design ; circuit model ; Design engineering ; electromagnetic band-gap ; high aspect ratio ; Integrated circuit modeling ; Mathematical models ; Metals ; Metamaterials ; Numerical analysis ; Periodic structures ; Resonators ; tall transmission line ; Unit cell</subject><ispartof>IEEE antennas and wireless propagation letters, 2014, Vol.13, p.1279-1283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</citedby><cites>FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6845316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6845316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hosseini, Mehdi</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><title>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.</description><subject>Antenna miniaturization</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Bloch</subject><subject>Capacitance</subject><subject>Circuit design</subject><subject>circuit model</subject><subject>Design engineering</subject><subject>electromagnetic band-gap</subject><subject>high aspect ratio</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Metamaterials</subject><subject>Numerical analysis</subject><subject>Periodic structures</subject><subject>Resonators</subject><subject>tall transmission line</subject><subject>Unit cell</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEUhYMoqNUfIG4CbtxMTSavmWWt9QEVRS1dDmnmjo1MMzXJgPrrTWlx4erexXcOhw-hM0qGlJLyajqaPw9zQvkwZ4wpke-hIyp4kQkl1P7mZzKjeS4O0XEIH4RQJQU7QosRHltvehvxY1dDi5vO47gEfAPBvjvcNfgV2iabfBkbocaT6zv8AqFzOiZw5CI4pwOe27jEj9ZZHXtvfxI4c6lyDG0bTtBBo9sAp7s7QLPbydv4Pps-3T2MR9PMsFzGTKoGaqN0vZDAioJTwk1eKkUVLxdEMi5ZDVAWouEajDSkFNCUWksmixpyygboctu79t1nDyFWKxtMWqAddH2oqBClLEqeigbo4h_60fXepXWJ4qqgXBCWKLqljO9C8NBUa29X2n9XlFQb69XGerWxXu2sp8z5NmMB4I-XBReMSvYLsS98Zw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Hosseini, Mehdi</creator><creator>Klymyshyn, David M.</creator><creator>Wells, Garth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>2014</creationdate><title>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</title><author>Hosseini, Mehdi ; Klymyshyn, David M. ; Wells, Garth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antenna miniaturization</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Bloch</topic><topic>Capacitance</topic><topic>Circuit design</topic><topic>circuit model</topic><topic>Design engineering</topic><topic>electromagnetic band-gap</topic><topic>high aspect ratio</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Metamaterials</topic><topic>Numerical analysis</topic><topic>Periodic structures</topic><topic>Resonators</topic><topic>tall transmission line</topic><topic>Unit cell</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, Mehdi</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hosseini, Mehdi</au><au>Klymyshyn, David M.</au><au>Wells, Garth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2014</date><risdate>2014</risdate><volume>13</volume><spage>1279</spage><epage>1283</epage><pages>1279-1283</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2014.2333752</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2014, Vol.13, p.1279-1283
issn 1536-1225
1548-5757
language eng
recordid cdi_proquest_miscellaneous_1559689446
source IEEE Electronic Library (IEL)
subjects Antenna miniaturization
Antenna radiation patterns
Antennas
Bloch
Capacitance
Circuit design
circuit model
Design engineering
electromagnetic band-gap
high aspect ratio
Integrated circuit modeling
Mathematical models
Metals
Metamaterials
Numerical analysis
Periodic structures
Resonators
tall transmission line
Unit cell
title A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Circuit%20Model%20for%20the%20Design%20of%20Self-Excited%20EBG%20Resonator%20Antennas%20With%20Miniaturized%20Unit%20Cells&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Hosseini,%20Mehdi&rft.date=2014&rft.volume=13&rft.spage=1279&rft.epage=1283&rft.pages=1279-1283&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2014.2333752&rft_dat=%3Cproquest_RIE%3E3382201231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547814503&rft_id=info:pmid/&rft_ieee_id=6845316&rfr_iscdi=true