A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells
A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric sla...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2014, Vol.13, p.1279-1283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | |
container_start_page | 1279 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 13 |
creator | Hosseini, Mehdi Klymyshyn, David M. Wells, Garth |
description | A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions. |
doi_str_mv | 10.1109/LAWP.2014.2333752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559689446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6845316</ieee_id><sourcerecordid>3382201231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoqNUfIG4CbtxMTSavmWWt9QEVRS1dDmnmjo1MMzXJgPrrTWlx4erexXcOhw-hM0qGlJLyajqaPw9zQvkwZ4wpke-hIyp4kQkl1P7mZzKjeS4O0XEIH4RQJQU7QosRHltvehvxY1dDi5vO47gEfAPBvjvcNfgV2iabfBkbocaT6zv8AqFzOiZw5CI4pwOe27jEj9ZZHXtvfxI4c6lyDG0bTtBBo9sAp7s7QLPbydv4Pps-3T2MR9PMsFzGTKoGaqN0vZDAioJTwk1eKkUVLxdEMi5ZDVAWouEajDSkFNCUWksmixpyygboctu79t1nDyFWKxtMWqAddH2oqBClLEqeigbo4h_60fXepXWJ4qqgXBCWKLqljO9C8NBUa29X2n9XlFQb69XGerWxXu2sp8z5NmMB4I-XBReMSvYLsS98Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547814503</pqid></control><display><type>article</type><title>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</title><source>IEEE Electronic Library (IEL)</source><creator>Hosseini, Mehdi ; Klymyshyn, David M. ; Wells, Garth</creator><creatorcontrib>Hosseini, Mehdi ; Klymyshyn, David M. ; Wells, Garth</creatorcontrib><description>A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2014.2333752</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna miniaturization ; Antenna radiation patterns ; Antennas ; Bloch ; Capacitance ; Circuit design ; circuit model ; Design engineering ; electromagnetic band-gap ; high aspect ratio ; Integrated circuit modeling ; Mathematical models ; Metals ; Metamaterials ; Numerical analysis ; Periodic structures ; Resonators ; tall transmission line ; Unit cell</subject><ispartof>IEEE antennas and wireless propagation letters, 2014, Vol.13, p.1279-1283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</citedby><cites>FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6845316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6845316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hosseini, Mehdi</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><title>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.</description><subject>Antenna miniaturization</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Bloch</subject><subject>Capacitance</subject><subject>Circuit design</subject><subject>circuit model</subject><subject>Design engineering</subject><subject>electromagnetic band-gap</subject><subject>high aspect ratio</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Metamaterials</subject><subject>Numerical analysis</subject><subject>Periodic structures</subject><subject>Resonators</subject><subject>tall transmission line</subject><subject>Unit cell</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEUhYMoqNUfIG4CbtxMTSavmWWt9QEVRS1dDmnmjo1MMzXJgPrrTWlx4erexXcOhw-hM0qGlJLyajqaPw9zQvkwZ4wpke-hIyp4kQkl1P7mZzKjeS4O0XEIH4RQJQU7QosRHltvehvxY1dDi5vO47gEfAPBvjvcNfgV2iabfBkbocaT6zv8AqFzOiZw5CI4pwOe27jEj9ZZHXtvfxI4c6lyDG0bTtBBo9sAp7s7QLPbydv4Pps-3T2MR9PMsFzGTKoGaqN0vZDAioJTwk1eKkUVLxdEMi5ZDVAWouEajDSkFNCUWksmixpyygboctu79t1nDyFWKxtMWqAddH2oqBClLEqeigbo4h_60fXepXWJ4qqgXBCWKLqljO9C8NBUa29X2n9XlFQb69XGerWxXu2sp8z5NmMB4I-XBReMSvYLsS98Zw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Hosseini, Mehdi</creator><creator>Klymyshyn, David M.</creator><creator>Wells, Garth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>2014</creationdate><title>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</title><author>Hosseini, Mehdi ; Klymyshyn, David M. ; Wells, Garth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-67fedc7adb6e3884104c29771749b063463dee985f4aec6c095ef9aa6368de213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antenna miniaturization</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Bloch</topic><topic>Capacitance</topic><topic>Circuit design</topic><topic>circuit model</topic><topic>Design engineering</topic><topic>electromagnetic band-gap</topic><topic>high aspect ratio</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Metamaterials</topic><topic>Numerical analysis</topic><topic>Periodic structures</topic><topic>Resonators</topic><topic>tall transmission line</topic><topic>Unit cell</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, Mehdi</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hosseini, Mehdi</au><au>Klymyshyn, David M.</au><au>Wells, Garth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2014</date><risdate>2014</risdate><volume>13</volume><spage>1279</spage><epage>1283</epage><pages>1279-1283</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>A circuit model based on Bloch theory is introduced to simplify analysis and design of antennas composed of thick metal electromagnetic band-gap (EBG) cells with large intercell coupling capacitance. The cells are composed of thick metal patches periodically deployed on a metal-backed dielectric slab. Two versions of cells are presented that provide large intercell capacitance, one with narrow high aspect ratio (HAR) gaps between cells and the other with interdigitated gaps between cells. This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to characterize the recently introduced self-excited EBG resonator antenna. Full-wave numerical analysis and experimentation validate the robustness and accuracy of the model over large variations in electrical/physical cell dimensions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2014.2333752</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2014, Vol.13, p.1279-1283 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559689446 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna miniaturization Antenna radiation patterns Antennas Bloch Capacitance Circuit design circuit model Design engineering electromagnetic band-gap high aspect ratio Integrated circuit modeling Mathematical models Metals Metamaterials Numerical analysis Periodic structures Resonators tall transmission line Unit cell |
title | A Circuit Model for the Design of Self-Excited EBG Resonator Antennas With Miniaturized Unit Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Circuit%20Model%20for%20the%20Design%20of%20Self-Excited%20EBG%20Resonator%20Antennas%20With%20Miniaturized%20Unit%20Cells&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Hosseini,%20Mehdi&rft.date=2014&rft.volume=13&rft.spage=1279&rft.epage=1283&rft.pages=1279-1283&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2014.2333752&rft_dat=%3Cproquest_RIE%3E3382201231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547814503&rft_id=info:pmid/&rft_ieee_id=6845316&rfr_iscdi=true |