An accurate algorithm to calculate the Hurst exponent of self-similar processes

In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2014-06, Vol.378 (32-33), p.2355-2362
Hauptverfasser: Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E., Román-Sánchez, I.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2362
container_issue 32-33
container_start_page 2355
container_title Physics letters. A
container_volume 378
creator Fernández-Martínez, M.
Sánchez-Granero, M.A.
Trinidad Segovia, J.E.
Román-Sánchez, I.M.
description In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S&P500 index stocks. •We provide a new approach to properly calculate the Hurst exponent.•This generalizes FD algorithms and GM2, introduced previously by the authors.•This method (FD4) results especially appropriate for short time series.•FD4 may be used in both unifractal and multifractal contexts.•As an empirical application, we show that S&P500 stocks improved their efficiency.
doi_str_mv 10.1016/j.physleta.2014.06.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559688890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960114005878</els_id><sourcerecordid>1559688890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f1b841c1c1512db47b876f0471391c074472e918d6b359c851ea000fe36c3eb33</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwC8hLNgmexHGcHVXFS6rUDawtx5lQV84D20H070lVWKNZjDS6987MIeQWWAoMxP0-HXeH4DDqNGPAUyZSBvKMLECWeZLxrDonC5aXRVIJBpfkKoQ9Y7OTVQuyXfVUGzN5HZFq9zF4G3cdjQM12pnJHcdxh_Rl8iFS_B6HHvtIh5YGdG0SbGed9nT0g8EQMFyTi1a7gDe_fUnenx7f1i_JZvv8ul5tEsOhiEkLteRg5ioga2pe1rIULeMl5BUYVnJeZliBbESdF5WRBaCeb24xFybHOs-X5O6UO2_-nDBE1dlg0Dnd4zAFBUVRCSllxWapOEmNH0Lw2KrR2077gwKmjgTVXv0RVEeCigk1E5yNDycjzo98WfQqGIu9wcZ6NFE1g_0v4gdJ7n2O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559688890</pqid></control><display><type>article</type><title>An accurate algorithm to calculate the Hurst exponent of self-similar processes</title><source>Elsevier ScienceDirect Journals</source><creator>Fernández-Martínez, M. ; Sánchez-Granero, M.A. ; Trinidad Segovia, J.E. ; Román-Sánchez, I.M.</creator><creatorcontrib>Fernández-Martínez, M. ; Sánchez-Granero, M.A. ; Trinidad Segovia, J.E. ; Román-Sánchez, I.M.</creatorcontrib><description>In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S&amp;P500 index stocks. •We provide a new approach to properly calculate the Hurst exponent.•This generalizes FD algorithms and GM2, introduced previously by the authors.•This method (FD4) results especially appropriate for short time series.•FD4 may be used in both unifractal and multifractal contexts.•As an empirical application, we show that S&amp;P500 stocks improved their efficiency.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2014.06.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Dynamic tests ; Evolution ; Exponents ; FD algorithms ; Fractional Brownian motion ; GM algorithms ; Hurst exponent ; Long memory ; Lévy stable motion ; Mathematical analysis ; Raw materials ; Self-similarity ; Time series</subject><ispartof>Physics letters. A, 2014-06, Vol.378 (32-33), p.2355-2362</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f1b841c1c1512db47b876f0471391c074472e918d6b359c851ea000fe36c3eb33</citedby><cites>FETCH-LOGICAL-c415t-f1b841c1c1512db47b876f0471391c074472e918d6b359c851ea000fe36c3eb33</cites><orcidid>0000-0001-9153-8321 ; 0000-0002-0098-4789 ; 0000-0001-6291-9205 ; 0000-0002-5017-2615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2014.06.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Fernández-Martínez, M.</creatorcontrib><creatorcontrib>Sánchez-Granero, M.A.</creatorcontrib><creatorcontrib>Trinidad Segovia, J.E.</creatorcontrib><creatorcontrib>Román-Sánchez, I.M.</creatorcontrib><title>An accurate algorithm to calculate the Hurst exponent of self-similar processes</title><title>Physics letters. A</title><description>In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S&amp;P500 index stocks. •We provide a new approach to properly calculate the Hurst exponent.•This generalizes FD algorithms and GM2, introduced previously by the authors.•This method (FD4) results especially appropriate for short time series.•FD4 may be used in both unifractal and multifractal contexts.•As an empirical application, we show that S&amp;P500 stocks improved their efficiency.</description><subject>Algorithms</subject><subject>Dynamic tests</subject><subject>Evolution</subject><subject>Exponents</subject><subject>FD algorithms</subject><subject>Fractional Brownian motion</subject><subject>GM algorithms</subject><subject>Hurst exponent</subject><subject>Long memory</subject><subject>Lévy stable motion</subject><subject>Mathematical analysis</subject><subject>Raw materials</subject><subject>Self-similarity</subject><subject>Time series</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwC8hLNgmexHGcHVXFS6rUDawtx5lQV84D20H070lVWKNZjDS6987MIeQWWAoMxP0-HXeH4DDqNGPAUyZSBvKMLECWeZLxrDonC5aXRVIJBpfkKoQ9Y7OTVQuyXfVUGzN5HZFq9zF4G3cdjQM12pnJHcdxh_Rl8iFS_B6HHvtIh5YGdG0SbGed9nT0g8EQMFyTi1a7gDe_fUnenx7f1i_JZvv8ul5tEsOhiEkLteRg5ioga2pe1rIULeMl5BUYVnJeZliBbESdF5WRBaCeb24xFybHOs-X5O6UO2_-nDBE1dlg0Dnd4zAFBUVRCSllxWapOEmNH0Lw2KrR2077gwKmjgTVXv0RVEeCigk1E5yNDycjzo98WfQqGIu9wcZ6NFE1g_0v4gdJ7n2O</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Fernández-Martínez, M.</creator><creator>Sánchez-Granero, M.A.</creator><creator>Trinidad Segovia, J.E.</creator><creator>Román-Sánchez, I.M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9153-8321</orcidid><orcidid>https://orcid.org/0000-0002-0098-4789</orcidid><orcidid>https://orcid.org/0000-0001-6291-9205</orcidid><orcidid>https://orcid.org/0000-0002-5017-2615</orcidid></search><sort><creationdate>20140627</creationdate><title>An accurate algorithm to calculate the Hurst exponent of self-similar processes</title><author>Fernández-Martínez, M. ; Sánchez-Granero, M.A. ; Trinidad Segovia, J.E. ; Román-Sánchez, I.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f1b841c1c1512db47b876f0471391c074472e918d6b359c851ea000fe36c3eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Dynamic tests</topic><topic>Evolution</topic><topic>Exponents</topic><topic>FD algorithms</topic><topic>Fractional Brownian motion</topic><topic>GM algorithms</topic><topic>Hurst exponent</topic><topic>Long memory</topic><topic>Lévy stable motion</topic><topic>Mathematical analysis</topic><topic>Raw materials</topic><topic>Self-similarity</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Martínez, M.</creatorcontrib><creatorcontrib>Sánchez-Granero, M.A.</creatorcontrib><creatorcontrib>Trinidad Segovia, J.E.</creatorcontrib><creatorcontrib>Román-Sánchez, I.M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Martínez, M.</au><au>Sánchez-Granero, M.A.</au><au>Trinidad Segovia, J.E.</au><au>Román-Sánchez, I.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate algorithm to calculate the Hurst exponent of self-similar processes</atitle><jtitle>Physics letters. A</jtitle><date>2014-06-27</date><risdate>2014</risdate><volume>378</volume><issue>32-33</issue><spage>2355</spage><epage>2362</epage><pages>2355-2362</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S&amp;P500 index stocks. •We provide a new approach to properly calculate the Hurst exponent.•This generalizes FD algorithms and GM2, introduced previously by the authors.•This method (FD4) results especially appropriate for short time series.•FD4 may be used in both unifractal and multifractal contexts.•As an empirical application, we show that S&amp;P500 stocks improved their efficiency.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2014.06.018</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9153-8321</orcidid><orcidid>https://orcid.org/0000-0002-0098-4789</orcidid><orcidid>https://orcid.org/0000-0001-6291-9205</orcidid><orcidid>https://orcid.org/0000-0002-5017-2615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2014-06, Vol.378 (32-33), p.2355-2362
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1559688890
source Elsevier ScienceDirect Journals
subjects Algorithms
Dynamic tests
Evolution
Exponents
FD algorithms
Fractional Brownian motion
GM algorithms
Hurst exponent
Long memory
Lévy stable motion
Mathematical analysis
Raw materials
Self-similarity
Time series
title An accurate algorithm to calculate the Hurst exponent of self-similar processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20algorithm%20to%20calculate%20the%20Hurst%20exponent%20of%20self-similar%20processes&rft.jtitle=Physics%20letters.%20A&rft.au=Fern%C3%A1ndez-Mart%C3%ADnez,%20M.&rft.date=2014-06-27&rft.volume=378&rft.issue=32-33&rft.spage=2355&rft.epage=2362&rft.pages=2355-2362&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2014.06.018&rft_dat=%3Cproquest_cross%3E1559688890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559688890&rft_id=info:pmid/&rft_els_id=S0375960114005878&rfr_iscdi=true