Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System

To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN) modeling scheme is proposed, which successfully addresses the issue of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors & transducers 2014-05, Vol.171 (5), p.141-141
Hauptverfasser: Hou, Run Min, Hou, Yuan Long, Liu, Rong Zhong, Yang, Guo Lai, Gao, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 5
container_start_page 141
container_title Sensors & transducers
container_volume 171
creator Hou, Run Min
Hou, Yuan Long
Liu, Rong Zhong
Yang, Guo Lai
Gao, Qiang
description To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN) modeling scheme is proposed, which successfully addresses the issue of the traditional wavelet neural network easily falling into local optimum, and significantly improves the network approximation capability and convergence rate. The control scheme of a SRWNN based on fuzzy compensation is expected. Gradient information is provided in real time for the controller, by using a SRWNN identifier, so as to ensure that the learning and adjusting function of the controller of the SRWNN operate well, and fuzzy compensation control is applied to improve rapidity and accuracy of the entire system. Then the Lyapunov function is utilized to judge the stability of the system. The experimental analysis and comparisons with other modeling and control methods, it is clearly shown that, the validities of the proposed modeling scheme and control scheme are effective.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559685277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559685277</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-5693bf2605e975d4f8943a74f6d090df86e283d7bd36390a393c95f7c8c8f2903</originalsourceid><addsrcrecordid>eNpdjktLAzEYAIMoWGr_Q8CLl4U8Nq9jWXxB1UMVjyXdfLFb02TNZiv-exf15GkuwzAnaEYVk5WolTlFM8aJrLSg4hwthmFPCKFEKcPIDO2WfR-61pYuRZw8tngNwVcZ2jFniAW_2iMEKPgRxmzDhPKZ8jvuIi47wA_JQejiG7bR4SbFklP4yUS8bKZUPia8_hoKHC7QmbdhgMUf5-jl5vq5uatWT7f3zXJV9ZTTUglp-NYzSQQYJVzttam5VbWXjhjivJbANHdq67jkhlhueGuEV61utWeG8Dm6-u32OX2MMJTNoRtaCMFGSOOwoUIYqQVTalIv_6n7NOY43U0WN5pSOfEbMWxhpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539811615</pqid></control><display><type>article</type><title>Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hou, Run Min ; Hou, Yuan Long ; Liu, Rong Zhong ; Yang, Guo Lai ; Gao, Qiang</creator><creatorcontrib>Hou, Run Min ; Hou, Yuan Long ; Liu, Rong Zhong ; Yang, Guo Lai ; Gao, Qiang</creatorcontrib><description>To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN) modeling scheme is proposed, which successfully addresses the issue of the traditional wavelet neural network easily falling into local optimum, and significantly improves the network approximation capability and convergence rate. The control scheme of a SRWNN based on fuzzy compensation is expected. Gradient information is provided in real time for the controller, by using a SRWNN identifier, so as to ensure that the learning and adjusting function of the controller of the SRWNN operate well, and fuzzy compensation control is applied to improve rapidity and accuracy of the entire system. Then the Lyapunov function is utilized to judge the stability of the system. The experimental analysis and comparisons with other modeling and control methods, it is clearly shown that, the validities of the proposed modeling scheme and control scheme are effective.</description><identifier>ISSN: 2306-8515</identifier><identifier>EISSN: 1726-5479</identifier><language>eng</language><publisher>Toronto: IFSA Publishing, S.L</publisher><subject>Compensation ; Control algorithms ; Control systems ; Controllers ; Fuzzy ; Fuzzy set theory ; Information storage ; Mathematical models ; Neural networks ; Servocontrol ; Servomechanisms ; Wavelet</subject><ispartof>Sensors &amp; transducers, 2014-05, Vol.171 (5), p.141-141</ispartof><rights>Copyright IFSA Publishing, S.L. May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Hou, Run Min</creatorcontrib><creatorcontrib>Hou, Yuan Long</creatorcontrib><creatorcontrib>Liu, Rong Zhong</creatorcontrib><creatorcontrib>Yang, Guo Lai</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><title>Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System</title><title>Sensors &amp; transducers</title><description>To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN) modeling scheme is proposed, which successfully addresses the issue of the traditional wavelet neural network easily falling into local optimum, and significantly improves the network approximation capability and convergence rate. The control scheme of a SRWNN based on fuzzy compensation is expected. Gradient information is provided in real time for the controller, by using a SRWNN identifier, so as to ensure that the learning and adjusting function of the controller of the SRWNN operate well, and fuzzy compensation control is applied to improve rapidity and accuracy of the entire system. Then the Lyapunov function is utilized to judge the stability of the system. The experimental analysis and comparisons with other modeling and control methods, it is clearly shown that, the validities of the proposed modeling scheme and control scheme are effective.</description><subject>Compensation</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Fuzzy</subject><subject>Fuzzy set theory</subject><subject>Information storage</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Servocontrol</subject><subject>Servomechanisms</subject><subject>Wavelet</subject><issn>2306-8515</issn><issn>1726-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjktLAzEYAIMoWGr_Q8CLl4U8Nq9jWXxB1UMVjyXdfLFb02TNZiv-exf15GkuwzAnaEYVk5WolTlFM8aJrLSg4hwthmFPCKFEKcPIDO2WfR-61pYuRZw8tngNwVcZ2jFniAW_2iMEKPgRxmzDhPKZ8jvuIi47wA_JQejiG7bR4SbFklP4yUS8bKZUPia8_hoKHC7QmbdhgMUf5-jl5vq5uatWT7f3zXJV9ZTTUglp-NYzSQQYJVzttam5VbWXjhjivJbANHdq67jkhlhueGuEV61utWeG8Dm6-u32OX2MMJTNoRtaCMFGSOOwoUIYqQVTalIv_6n7NOY43U0WN5pSOfEbMWxhpA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Hou, Run Min</creator><creator>Hou, Yuan Long</creator><creator>Liu, Rong Zhong</creator><creator>Yang, Guo Lai</creator><creator>Gao, Qiang</creator><general>IFSA Publishing, S.L</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SC</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System</title><author>Hou, Run Min ; Hou, Yuan Long ; Liu, Rong Zhong ; Yang, Guo Lai ; Gao, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-5693bf2605e975d4f8943a74f6d090df86e283d7bd36390a393c95f7c8c8f2903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Compensation</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Fuzzy</topic><topic>Fuzzy set theory</topic><topic>Information storage</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Servocontrol</topic><topic>Servomechanisms</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Run Min</creatorcontrib><creatorcontrib>Hou, Yuan Long</creatorcontrib><creatorcontrib>Liu, Rong Zhong</creatorcontrib><creatorcontrib>Yang, Guo Lai</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Sensors &amp; transducers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Run Min</au><au>Hou, Yuan Long</au><au>Liu, Rong Zhong</au><au>Yang, Guo Lai</au><au>Gao, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System</atitle><jtitle>Sensors &amp; transducers</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>171</volume><issue>5</issue><spage>141</spage><epage>141</epage><pages>141-141</pages><issn>2306-8515</issn><eissn>1726-5479</eissn><abstract>To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN) modeling scheme is proposed, which successfully addresses the issue of the traditional wavelet neural network easily falling into local optimum, and significantly improves the network approximation capability and convergence rate. The control scheme of a SRWNN based on fuzzy compensation is expected. Gradient information is provided in real time for the controller, by using a SRWNN identifier, so as to ensure that the learning and adjusting function of the controller of the SRWNN operate well, and fuzzy compensation control is applied to improve rapidity and accuracy of the entire system. Then the Lyapunov function is utilized to judge the stability of the system. The experimental analysis and comparisons with other modeling and control methods, it is clearly shown that, the validities of the proposed modeling scheme and control scheme are effective.</abstract><cop>Toronto</cop><pub>IFSA Publishing, S.L</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-8515
ispartof Sensors & transducers, 2014-05, Vol.171 (5), p.141-141
issn 2306-8515
1726-5479
language eng
recordid cdi_proquest_miscellaneous_1559685277
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Compensation
Control algorithms
Control systems
Controllers
Fuzzy
Fuzzy set theory
Information storage
Mathematical models
Neural networks
Servocontrol
Servomechanisms
Wavelet
title Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20Self-recurrent%20Wavelet%20Neural%20Network%20in%20the%20Modeling%20and%20Control%20of%20an%20AC%20Servo%20System&rft.jtitle=Sensors%20&%20transducers&rft.au=Hou,%20Run%20Min&rft.date=2014-05-01&rft.volume=171&rft.issue=5&rft.spage=141&rft.epage=141&rft.pages=141-141&rft.issn=2306-8515&rft.eissn=1726-5479&rft_id=info:doi/&rft_dat=%3Cproquest%3E1559685277%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539811615&rft_id=info:pmid/&rfr_iscdi=true