Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases
Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and th...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2014-07, Vol.24 (25), p.4005-4014 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4014 |
---|---|
container_issue | 25 |
container_start_page | 4005 |
container_title | Advanced functional materials |
container_volume | 24 |
creator | Zhang, Yuxi Kim, Jae Jin Chen, Di Tuller, Harry L. Rutledge, Gregory C. |
description | Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.
Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers. |
doi_str_mv | 10.1002/adfm.201400185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559683690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559683690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</originalsourceid><addsrcrecordid>eNqFkEFPwjAUgBejiYhePffoZdh2W7cdCQiYABqHwVvz2N6guq3YgsLRf-4mhnjz0jbp972XfI5zzWiHUcpvIcvLDqfMp5RFwYnTYoIJ16M8Oj2-2cu5c2Hta42Eoee3nK-7AtON0Xa9rcijLvZQqUJVSAZqgcYSsGSklqtiTxKsrNqoDyRPWpdkhuUaDWy2BklvhaUyaJX9-W9IXbu5NqRblrpSQKDKyFTVi5ZYkb7SO5UhGYJFe-mc5VBYvPq9287z4G7WG7njh-F9rzt2Uz-kgYvRggMDjuBFHEOx4DmIIKbIIoZC0DwNQp_GkGXopzwQPuUhLHicUT9rTq_t3Bzmro1-36LdyFLZFIsCKtRbK1kQxCLyRNygnQOa1mGswVyujSrB7CWjsmktm9by2LoW4oPwqQrc_0PLbn8w-eu6B7euh7ujC-ZNitALAzmfDmWSJFOasLmceN8dV5Se</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559683690</pqid></control><display><type>article</type><title>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</title><source>Wiley Journals</source><creator>Zhang, Yuxi ; Kim, Jae Jin ; Chen, Di ; Tuller, Harry L. ; Rutledge, Gregory C.</creator><creatorcontrib>Zhang, Yuxi ; Kim, Jae Jin ; Chen, Di ; Tuller, Harry L. ; Rutledge, Gregory C.</creatorcontrib><description>Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.
Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201400185</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Ammonia ; Detection ; Electrospinning ; Fibers ; Gas sensors ; nanofibers ; Nitrogen dioxide ; polyaniline ; Response time ; Sensors</subject><ispartof>Advanced functional materials, 2014-07, Vol.24 (25), p.4005-4014</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</citedby><cites>FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201400185$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201400185$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Yuxi</creatorcontrib><creatorcontrib>Kim, Jae Jin</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Tuller, Harry L.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><title>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.
Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.</description><subject>Ammonia</subject><subject>Detection</subject><subject>Electrospinning</subject><subject>Fibers</subject><subject>Gas sensors</subject><subject>nanofibers</subject><subject>Nitrogen dioxide</subject><subject>polyaniline</subject><subject>Response time</subject><subject>Sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUgBejiYhePffoZdh2W7cdCQiYABqHwVvz2N6guq3YgsLRf-4mhnjz0jbp972XfI5zzWiHUcpvIcvLDqfMp5RFwYnTYoIJ16M8Oj2-2cu5c2Hta42Eoee3nK-7AtON0Xa9rcijLvZQqUJVSAZqgcYSsGSklqtiTxKsrNqoDyRPWpdkhuUaDWy2BklvhaUyaJX9-W9IXbu5NqRblrpSQKDKyFTVi5ZYkb7SO5UhGYJFe-mc5VBYvPq9287z4G7WG7njh-F9rzt2Uz-kgYvRggMDjuBFHEOx4DmIIKbIIoZC0DwNQp_GkGXopzwQPuUhLHicUT9rTq_t3Bzmro1-36LdyFLZFIsCKtRbK1kQxCLyRNygnQOa1mGswVyujSrB7CWjsmktm9by2LoW4oPwqQrc_0PLbn8w-eu6B7euh7ujC-ZNitALAzmfDmWSJFOasLmceN8dV5Se</recordid><startdate>20140702</startdate><enddate>20140702</enddate><creator>Zhang, Yuxi</creator><creator>Kim, Jae Jin</creator><creator>Chen, Di</creator><creator>Tuller, Harry L.</creator><creator>Rutledge, Gregory C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140702</creationdate><title>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</title><author>Zhang, Yuxi ; Kim, Jae Jin ; Chen, Di ; Tuller, Harry L. ; Rutledge, Gregory C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4705-e8b2a1a2ea382e76b2fa6590e181e660fc57409adde4c2564027ab29d04d29d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ammonia</topic><topic>Detection</topic><topic>Electrospinning</topic><topic>Fibers</topic><topic>Gas sensors</topic><topic>nanofibers</topic><topic>Nitrogen dioxide</topic><topic>polyaniline</topic><topic>Response time</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuxi</creatorcontrib><creatorcontrib>Kim, Jae Jin</creatorcontrib><creatorcontrib>Chen, Di</creatorcontrib><creatorcontrib>Tuller, Harry L.</creatorcontrib><creatorcontrib>Rutledge, Gregory C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuxi</au><au>Kim, Jae Jin</au><au>Chen, Di</au><au>Tuller, Harry L.</au><au>Rutledge, Gregory C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-07-02</date><risdate>2014</risdate><volume>24</volume><issue>25</issue><spage>4005</spage><epage>4014</epage><pages>4005-4014</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrospun polyaniline (PAni) fibers doped with different levels of (+)‐camphor‐10‐sulfonic acid (HCSA) are fabricated and evaluated as chemiresistive gas sensors. The experimental results, based on both sensitivity and response time, show that doped PAni fibers are excellent ammonia sensors and that undoped PAni fibers are excellent nitrogen dioxide sensors. The fibers exhibit changes in measured resistances up to 60‐fold for ammonia sensing, and more than five orders of magnitude for nitrogen dioxide sensing, with characteristic response times on the order of one minute in both cases. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental sensor data. The model is then used to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.
Electrospun polyaniline fibers are fabricated and evaluated as chemiresistive gas sensors. The fibers exhibit remarkable changes in measured resistances for ammonia and nitrogen dioxide sensing, with short characteristic response times. A time‐dependent reaction‐diffusion model is used to extract physical parameters from fitting experimental data, and to illustrate the selection of optimal material design parameters for gas sensing by nanofibers.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201400185</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2014-07, Vol.24 (25), p.4005-4014 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559683690 |
source | Wiley Journals |
subjects | Ammonia Detection Electrospinning Fibers Gas sensors nanofibers Nitrogen dioxide polyaniline Response time Sensors |
title | Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Polyaniline%20Fibers%20as%20Highly%20Sensitive%20Room%20Temperature%20Chemiresistive%20Sensors%20for%20Ammonia%20and%20Nitrogen%20Dioxide%20Gases&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Yuxi&rft.date=2014-07-02&rft.volume=24&rft.issue=25&rft.spage=4005&rft.epage=4014&rft.pages=4005-4014&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201400185&rft_dat=%3Cproquest_cross%3E1559683690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559683690&rft_id=info:pmid/&rfr_iscdi=true |