A Reversible and Higher-Rate Li-O2 Battery
The rechargeable nonaqueous lithium-air (Li-O(2)) battery is receiving a great deal of interest because, theoretically, its specific energy far exceeds the best that can be achieved with lithium-ion cells. Operation of the rechargeable Li-O(2) battery depends critically on repeated and highly revers...
Gespeichert in:
Veröffentlicht in: | Science 2012-08, Vol.337 (6094), p.563-566 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rechargeable nonaqueous lithium-air (Li-O(2)) battery is receiving a great deal of interest because, theoretically, its specific energy far exceeds the best that can be achieved with lithium-ion cells. Operation of the rechargeable Li-O(2) battery depends critically on repeated and highly reversible formation/decomposition of lithium peroxide (Li(2)O(2)) at the cathode upon cycling. Here, we show that this process is possible with the use of a dimethyl sulfoxide electrolyte and a porous gold electrode (95% capacity retention from cycles 1 to 100), whereas previously only partial Li(2)O(2) formation/decomposition and limited cycling could occur. Furthermore, we present data indicating that the kinetics of Li(2)O(2) oxidation on charge is approximately 10 times faster than on carbon electrodes. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1223985 |