Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing

In the literature on optimal regular volume sampling, the Body‐Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band‐limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face‐Centered Cubic (FCC) latt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2014-06, Vol.33 (3), p.81-90
Hauptverfasser: Vad, Viktor, Csébfalvi, Balázs, Rautek, Peter, Gröller, Eduard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 3
container_start_page 81
container_title Computer graphics forum
container_volume 33
creator Vad, Viktor
Csébfalvi, Balázs
Rautek, Peter
Gröller, Eduard
description In the literature on optimal regular volume sampling, the Body‐Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band‐limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face‐Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well‐known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner‐Lobb test signal such that an undue advantage is not given to either lattice.
doi_str_mv 10.1111/cgf.12364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559681052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3372545411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4034-c41613f0a4481045574bb35b32d5f469e1a8ffa4986ea9709934ba796b4c0daf3</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtbqwjcIuFFwNGn-JksdbBVKFay6DHdmEolOZ2rSUn17U6suBLO4yeI7l3AQOqTkjKZzXj27Mzpgkm-hHuVSZbkUehv1CE1vRYTYRXsxvhBCuJKih-6n3QpCHTG0-KEtPURb46KbzSH42LW4c7goTvHlekBb42FR4DEsFr6yEfsWT22YxbW6CxaaFPft8z7acdBEe_B999HD8GpaXGfj29FNcTHOKk4YT5NKyhwBznNKuBCKlyUTJRvUwnGpLYXcOeA6lxa0IlozXoLSsuQVqcGxPjre7J2H7m1p48LMfKxs00Bru2U0VAgt02oxSPToD33plqFNv0uKi9ROTvOkTjaqCl2MwTozD34G4cNQYtb1mlSv-ao32fONXfnGfvwPTTEa_iSyTcLHhX3_TUB4NVIxJczTZGQe9T1TEz0xj-wT5K6HBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545016818</pqid></control><display><type>article</type><title>Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Vad, Viktor ; Csébfalvi, Balázs ; Rautek, Peter ; Gröller, Eduard</creator><creatorcontrib>Vad, Viktor ; Csébfalvi, Balázs ; Rautek, Peter ; Gröller, Eduard</creatorcontrib><description>In the literature on optimal regular volume sampling, the Body‐Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band‐limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face‐Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well‐known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner‐Lobb test signal such that an undue advantage is not given to either lattice.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12364</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Analysis ; Body centered cubic lattice ; Categories and Subject Descriptors (according to ACM CCS) ; Computer graphics ; Cubic lattice ; Errors ; Face centered cubic lattice ; I.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms ; I.4.10 [Image Processing and Computer Vision]: Image representation-Volumetric ; Intervals ; Lattices ; Optimization ; Sampling ; Studies</subject><ispartof>Computer graphics forum, 2014-06, Vol.33 (3), p.81-90</ispartof><rights>2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2014 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4034-c41613f0a4481045574bb35b32d5f469e1a8ffa4986ea9709934ba796b4c0daf3</citedby><cites>FETCH-LOGICAL-c4034-c41613f0a4481045574bb35b32d5f469e1a8ffa4986ea9709934ba796b4c0daf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12364$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12364$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Vad, Viktor</creatorcontrib><creatorcontrib>Csébfalvi, Balázs</creatorcontrib><creatorcontrib>Rautek, Peter</creatorcontrib><creatorcontrib>Gröller, Eduard</creatorcontrib><title>Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>In the literature on optimal regular volume sampling, the Body‐Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band‐limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face‐Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well‐known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner‐Lobb test signal such that an undue advantage is not given to either lattice.</description><subject>Analysis</subject><subject>Body centered cubic lattice</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Computer graphics</subject><subject>Cubic lattice</subject><subject>Errors</subject><subject>Face centered cubic lattice</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms</subject><subject>I.4.10 [Image Processing and Computer Vision]: Image representation-Volumetric</subject><subject>Intervals</subject><subject>Lattices</subject><subject>Optimization</subject><subject>Sampling</subject><subject>Studies</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtbqwjcIuFFwNGn-JksdbBVKFay6DHdmEolOZ2rSUn17U6suBLO4yeI7l3AQOqTkjKZzXj27Mzpgkm-hHuVSZbkUehv1CE1vRYTYRXsxvhBCuJKih-6n3QpCHTG0-KEtPURb46KbzSH42LW4c7goTvHlekBb42FR4DEsFr6yEfsWT22YxbW6CxaaFPft8z7acdBEe_B999HD8GpaXGfj29FNcTHOKk4YT5NKyhwBznNKuBCKlyUTJRvUwnGpLYXcOeA6lxa0IlozXoLSsuQVqcGxPjre7J2H7m1p48LMfKxs00Bru2U0VAgt02oxSPToD33plqFNv0uKi9ROTvOkTjaqCl2MwTozD34G4cNQYtb1mlSv-ao32fONXfnGfvwPTTEa_iSyTcLHhX3_TUB4NVIxJczTZGQe9T1TEz0xj-wT5K6HBg</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Vad, Viktor</creator><creator>Csébfalvi, Balázs</creator><creator>Rautek, Peter</creator><creator>Gröller, Eduard</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201406</creationdate><title>Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing</title><author>Vad, Viktor ; Csébfalvi, Balázs ; Rautek, Peter ; Gröller, Eduard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4034-c41613f0a4481045574bb35b32d5f469e1a8ffa4986ea9709934ba796b4c0daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Body centered cubic lattice</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Computer graphics</topic><topic>Cubic lattice</topic><topic>Errors</topic><topic>Face centered cubic lattice</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms</topic><topic>I.4.10 [Image Processing and Computer Vision]: Image representation-Volumetric</topic><topic>Intervals</topic><topic>Lattices</topic><topic>Optimization</topic><topic>Sampling</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vad, Viktor</creatorcontrib><creatorcontrib>Csébfalvi, Balázs</creatorcontrib><creatorcontrib>Rautek, Peter</creatorcontrib><creatorcontrib>Gröller, Eduard</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vad, Viktor</au><au>Csébfalvi, Balázs</au><au>Rautek, Peter</au><au>Gröller, Eduard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2014-06</date><risdate>2014</risdate><volume>33</volume><issue>3</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>In the literature on optimal regular volume sampling, the Body‐Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band‐limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face‐Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well‐known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner‐Lobb test signal such that an undue advantage is not given to either lattice.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12364</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2014-06, Vol.33 (3), p.81-90
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1559681052
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Analysis
Body centered cubic lattice
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Cubic lattice
Errors
Face centered cubic lattice
I.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms
I.4.10 [Image Processing and Computer Vision]: Image representation-Volumetric
Intervals
Lattices
Optimization
Sampling
Studies
title Towards an Unbiased Comparison of CC, BCC, and FCC Lattices in Terms of Prealiasing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20an%20Unbiased%20Comparison%20of%20CC,%20BCC,%20and%20FCC%20Lattices%20in%20Terms%20of%20Prealiasing&rft.jtitle=Computer%20graphics%20forum&rft.au=Vad,%20Viktor&rft.date=2014-06&rft.volume=33&rft.issue=3&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12364&rft_dat=%3Cproquest_cross%3E3372545411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545016818&rft_id=info:pmid/&rfr_iscdi=true