Photonic Boson Sampling in a Tunable Circuit
Quantum computers are unnecessary for exponentially efficient computation or simulation if the Extended Church-Turing thesis is correct. The thesis would be strongly contradicted by physical devices that efficiently perform tasks believed to be intractable for classical computers. Such a task is bos...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-02, Vol.339 (6121), p.794-798 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum computers are unnecessary for exponentially efficient computation or simulation if the Extended Church-Turing thesis is correct. The thesis would be strongly contradicted by physical devices that efficiently perform tasks believed to be intractable for classical computers. Such a task is boson sampling: sampling the output distributions of n bosons scattered by some passive, linear unitary process. We tested the central premise of boson sampling, experimentally verifying that three-photon scattering amplitudes are given by the permanents of submatrices generated from a unitary describing a six-mode integrated optical circuit. We find the protocol to be robust, working even with the unavoidable effects of photon loss, non-ideal sources, and imperfect detection. Scaling this to large numbers of photons should be a much simpler task than building a universal quantum computer. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1231440 |