The dark side of interval temporal logic: marking the undecidability border
Unlike the Moon, the dark side of interval temporal logics is the one we usually see: their ubiquitous undecidability. Identifying minimal undecidable interval logics is thus a natural and important issue in that research area. In this paper, we identify several new minimal undecidable logics amongs...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics and artificial intelligence 2014-07, Vol.71 (1-3), p.41-83 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1-3 |
container_start_page | 41 |
container_title | Annals of mathematics and artificial intelligence |
container_volume | 71 |
creator | Bresolin, Davide Monica, Dario Della Goranko, Valentin Montanari, Angelo Sciavicco, Guido |
description | Unlike the Moon, the dark side of interval temporal logics is the one we usually see: their ubiquitous undecidability. Identifying
minimal
undecidable interval logics is thus a natural and important issue in that research area. In this paper, we identify several new minimal undecidable logics amongst the fragments of Halpern and Shoham’s logic HS, including the logic of the
overlaps
relation, over the classes of all finite linear orders and all linear orders, as well as the logic of the
meets
and
subinterval
relations, over the classes of all and dense linear orders. Together with previous undecidability results, this work contributes to bringing the identification of the dark side of interval temporal logics very close to the definitive picture. |
doi_str_mv | 10.1007/s10472-013-9376-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559678178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918193013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fef51ef19b728b248ba81337fd131a6a841c7638a886ffb433beaf1d42ae6a493</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BL16qmSTNhzcRv3DBy3oOaZusWbvtmrTC_nuzVBAETzOH53mZeRE6B3IFhMjrBIRLWhBghWZSFPwAzaCUrJBcksO8E6AF5Zwdo5OU1oQQLZSYoZflu8ONjR84hcbh3uPQDS5-2RYPbrPtY17afhXqG7zJVOhWeMjG2DWuDo2tQhuGHa762Lh4io68bZM7-5lz9PZwv7x7Khavj893t4uiZlwPhXe-BOdBV5KqinJVWQWMSd8AAyus4lBLwZRVSnhfccYqZz00nFonLNdsji6n3G3sP0eXBrMJqXZtazvXj8lAWWohFUiV0Ys_6LofY5evM1SDAs1yY5mCiapjn1J03mxjyO_uDBCzr9dM9ZoMm329hmeHTk7KbLdy8Tf5f-kbrap8iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918193013</pqid></control><display><type>article</type><title>The dark side of interval temporal logic: marking the undecidability border</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Bresolin, Davide ; Monica, Dario Della ; Goranko, Valentin ; Montanari, Angelo ; Sciavicco, Guido</creator><creatorcontrib>Bresolin, Davide ; Monica, Dario Della ; Goranko, Valentin ; Montanari, Angelo ; Sciavicco, Guido</creatorcontrib><description>Unlike the Moon, the dark side of interval temporal logics is the one we usually see: their ubiquitous undecidability. Identifying
minimal
undecidable interval logics is thus a natural and important issue in that research area. In this paper, we identify several new minimal undecidable logics amongst the fragments of Halpern and Shoham’s logic HS, including the logic of the
overlaps
relation, over the classes of all finite linear orders and all linear orders, as well as the logic of the
meets
and
subinterval
relations, over the classes of all and dense linear orders. Together with previous undecidability results, this work contributes to bringing the identification of the dark side of interval temporal logics very close to the definitive picture.</description><identifier>ISSN: 1012-2443</identifier><identifier>EISSN: 1573-7470</identifier><identifier>DOI: 10.1007/s10472-013-9376-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial Intelligence ; Borders ; Complex Systems ; Computer Science ; Expert systems ; Intervals ; Logic ; Mathematical analysis ; Mathematics ; Moon ; Temporal logic</subject><ispartof>Annals of mathematics and artificial intelligence, 2014-07, Vol.71 (1-3), p.41-83</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Springer Science+Business Media Dordrecht 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fef51ef19b728b248ba81337fd131a6a841c7638a886ffb433beaf1d42ae6a493</citedby><cites>FETCH-LOGICAL-c349t-fef51ef19b728b248ba81337fd131a6a841c7638a886ffb433beaf1d42ae6a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10472-013-9376-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918193013?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Bresolin, Davide</creatorcontrib><creatorcontrib>Monica, Dario Della</creatorcontrib><creatorcontrib>Goranko, Valentin</creatorcontrib><creatorcontrib>Montanari, Angelo</creatorcontrib><creatorcontrib>Sciavicco, Guido</creatorcontrib><title>The dark side of interval temporal logic: marking the undecidability border</title><title>Annals of mathematics and artificial intelligence</title><addtitle>Ann Math Artif Intell</addtitle><description>Unlike the Moon, the dark side of interval temporal logics is the one we usually see: their ubiquitous undecidability. Identifying
minimal
undecidable interval logics is thus a natural and important issue in that research area. In this paper, we identify several new minimal undecidable logics amongst the fragments of Halpern and Shoham’s logic HS, including the logic of the
overlaps
relation, over the classes of all finite linear orders and all linear orders, as well as the logic of the
meets
and
subinterval
relations, over the classes of all and dense linear orders. Together with previous undecidability results, this work contributes to bringing the identification of the dark side of interval temporal logics very close to the definitive picture.</description><subject>Artificial Intelligence</subject><subject>Borders</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Expert systems</subject><subject>Intervals</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Moon</subject><subject>Temporal logic</subject><issn>1012-2443</issn><issn>1573-7470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8BL16qmSTNhzcRv3DBy3oOaZusWbvtmrTC_nuzVBAETzOH53mZeRE6B3IFhMjrBIRLWhBghWZSFPwAzaCUrJBcksO8E6AF5Zwdo5OU1oQQLZSYoZflu8ONjR84hcbh3uPQDS5-2RYPbrPtY17afhXqG7zJVOhWeMjG2DWuDo2tQhuGHa762Lh4io68bZM7-5lz9PZwv7x7Khavj893t4uiZlwPhXe-BOdBV5KqinJVWQWMSd8AAyus4lBLwZRVSnhfccYqZz00nFonLNdsji6n3G3sP0eXBrMJqXZtazvXj8lAWWohFUiV0Ys_6LofY5evM1SDAs1yY5mCiapjn1J03mxjyO_uDBCzr9dM9ZoMm329hmeHTk7KbLdy8Tf5f-kbrap8iA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Bresolin, Davide</creator><creator>Monica, Dario Della</creator><creator>Goranko, Valentin</creator><creator>Montanari, Angelo</creator><creator>Sciavicco, Guido</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140701</creationdate><title>The dark side of interval temporal logic: marking the undecidability border</title><author>Bresolin, Davide ; Monica, Dario Della ; Goranko, Valentin ; Montanari, Angelo ; Sciavicco, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fef51ef19b728b248ba81337fd131a6a841c7638a886ffb433beaf1d42ae6a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Borders</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Expert systems</topic><topic>Intervals</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Moon</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bresolin, Davide</creatorcontrib><creatorcontrib>Monica, Dario Della</creatorcontrib><creatorcontrib>Goranko, Valentin</creatorcontrib><creatorcontrib>Montanari, Angelo</creatorcontrib><creatorcontrib>Sciavicco, Guido</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Annals of mathematics and artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bresolin, Davide</au><au>Monica, Dario Della</au><au>Goranko, Valentin</au><au>Montanari, Angelo</au><au>Sciavicco, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dark side of interval temporal logic: marking the undecidability border</atitle><jtitle>Annals of mathematics and artificial intelligence</jtitle><stitle>Ann Math Artif Intell</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>71</volume><issue>1-3</issue><spage>41</spage><epage>83</epage><pages>41-83</pages><issn>1012-2443</issn><eissn>1573-7470</eissn><abstract>Unlike the Moon, the dark side of interval temporal logics is the one we usually see: their ubiquitous undecidability. Identifying
minimal
undecidable interval logics is thus a natural and important issue in that research area. In this paper, we identify several new minimal undecidable logics amongst the fragments of Halpern and Shoham’s logic HS, including the logic of the
overlaps
relation, over the classes of all finite linear orders and all linear orders, as well as the logic of the
meets
and
subinterval
relations, over the classes of all and dense linear orders. Together with previous undecidability results, this work contributes to bringing the identification of the dark side of interval temporal logics very close to the definitive picture.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10472-013-9376-4</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-2443 |
ispartof | Annals of mathematics and artificial intelligence, 2014-07, Vol.71 (1-3), p.41-83 |
issn | 1012-2443 1573-7470 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559678178 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Artificial Intelligence Borders Complex Systems Computer Science Expert systems Intervals Logic Mathematical analysis Mathematics Moon Temporal logic |
title | The dark side of interval temporal logic: marking the undecidability border |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dark%20side%20of%20interval%20temporal%20logic:%20marking%20the%20undecidability%20border&rft.jtitle=Annals%20of%20mathematics%20and%20artificial%20intelligence&rft.au=Bresolin,%20Davide&rft.date=2014-07-01&rft.volume=71&rft.issue=1-3&rft.spage=41&rft.epage=83&rft.pages=41-83&rft.issn=1012-2443&rft.eissn=1573-7470&rft_id=info:doi/10.1007/s10472-013-9376-4&rft_dat=%3Cproquest_cross%3E2918193013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918193013&rft_id=info:pmid/&rfr_iscdi=true |