Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes

Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2014-08, Vol.6 (16), p.9421-9427
Hauptverfasser: Hemraz, Usha D, El-Bakkari, Mounir, Yamazaki, Takeshi, Cho, Jae-Young, Beingessner, Rachel L, Fenniri, Hicham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly process under methanolic and aqueous conditions to produce helical rosette nanotubes (RNTs), were synthesized and characterized. The built-in molecular chirality in the twin-G∧C building blocks led to the supramolecular chirality exhibited by the RNTs, as evidenced by the CD activity. Depending on the motifs and environmental conditions, mirror-image supramolecular chirality due to absolute molecular chirality, solvent-induced and structure-dependent supramolecular chirality inversion, and pH-controlled chiroptical switching were observed.
ISSN:2040-3364
2040-3372
DOI:10.1039/c4nr00340c