Mechanically detecting and avoiding the quantum fluctuations of a microwave field

Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-06, Vol.344 (6189), p.1262-1265
Hauptverfasser: Suh, J., Weinstein, A. J., Lei, C. U., Wollman, E. E., Steinke, S. K., Meystre, P., Clerk, A. A., Schwab, K. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1265
container_issue 6189
container_start_page 1262
container_title Science (American Association for the Advancement of Science)
container_volume 344
creator Suh, J.
Weinstein, A. J.
Lei, C. U.
Wollman, E. E.
Steinke, S. K.
Meystre, P.
Clerk, A. A.
Schwab, K. C.
description Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.
doi_str_mv 10.1126/science.1253258
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559675431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744685</jstor_id><sourcerecordid>24744685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbPnoQFL17S7kc2yR6l-AWKCHoOm8ms3ZJs2uym0v_elBYPnobH_N4w7xFyzdmMc5HNAzj0gDMulBSqOCETzrRKtGDylEwYk1lSsFydk4sQVoyNOy0n5OMNYWm8A9M0O1pjRIjOf1Pja2q2nav3Ii6Rbgbj49BS2wwQBxNd5wPtLDW0ddB3P2aL1Dps6ktyZk0T8Oo4p-Tr8eFz8Zy8vj-9LO5fE5BMxQRqw02hWMFqnWmBgHYUAiUAMIY1QF5ntuBW6AoE1zKXhapAV5WU0thcTsnd4e667zYDhli2LgA2jfHYDaHkSuksV6nkI3r7D111Q-_H70ZKKpEqJfbU_ECNcULo0Zbr3rWm35WclfuKy2PF5bHi0XFzcKxC7Po_XKR5mmaFkr90lnq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535245521</pqid></control><display><type>article</type><title>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Suh, J. ; Weinstein, A. J. ; Lei, C. U. ; Wollman, E. E. ; Steinke, S. K. ; Meystre, P. ; Clerk, A. A. ; Schwab, K. C.</creator><creatorcontrib>Suh, J. ; Weinstein, A. J. ; Lei, C. U. ; Wollman, E. E. ; Steinke, S. K. ; Meystre, P. ; Clerk, A. A. ; Schwab, K. C.</creatorcontrib><description>Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1253258</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Calibration ; Circuits ; Damping ; Fluctuation ; Microwave resonance ; Microwaves ; Miniature ; Monitors ; Noise measurement ; Oscillators ; Pumps ; Quantum mechanics ; Quantum physics ; Quantum theory ; Resonators ; Sidebands ; Superconductivity ; Thermometers ; Transition zones</subject><ispartof>Science (American Association for the Advancement of Science), 2014-06, Vol.344 (6189), p.1262-1265</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</citedby><cites>FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744685$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744685$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2870,2871,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Suh, J.</creatorcontrib><creatorcontrib>Weinstein, A. J.</creatorcontrib><creatorcontrib>Lei, C. U.</creatorcontrib><creatorcontrib>Wollman, E. E.</creatorcontrib><creatorcontrib>Steinke, S. K.</creatorcontrib><creatorcontrib>Meystre, P.</creatorcontrib><creatorcontrib>Clerk, A. A.</creatorcontrib><creatorcontrib>Schwab, K. C.</creatorcontrib><title>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</title><title>Science (American Association for the Advancement of Science)</title><description>Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.</description><subject>Calibration</subject><subject>Circuits</subject><subject>Damping</subject><subject>Fluctuation</subject><subject>Microwave resonance</subject><subject>Microwaves</subject><subject>Miniature</subject><subject>Monitors</subject><subject>Noise measurement</subject><subject>Oscillators</subject><subject>Pumps</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Resonators</subject><subject>Sidebands</subject><subject>Superconductivity</subject><subject>Thermometers</subject><subject>Transition zones</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxRdRsFbPnoQFL17S7kc2yR6l-AWKCHoOm8ms3ZJs2uym0v_elBYPnobH_N4w7xFyzdmMc5HNAzj0gDMulBSqOCETzrRKtGDylEwYk1lSsFydk4sQVoyNOy0n5OMNYWm8A9M0O1pjRIjOf1Pja2q2nav3Ii6Rbgbj49BS2wwQBxNd5wPtLDW0ddB3P2aL1Dps6ktyZk0T8Oo4p-Tr8eFz8Zy8vj-9LO5fE5BMxQRqw02hWMFqnWmBgHYUAiUAMIY1QF5ntuBW6AoE1zKXhapAV5WU0thcTsnd4e667zYDhli2LgA2jfHYDaHkSuksV6nkI3r7D111Q-_H70ZKKpEqJfbU_ECNcULo0Zbr3rWm35WclfuKy2PF5bHi0XFzcKxC7Po_XKR5mmaFkr90lnq3</recordid><startdate>20140613</startdate><enddate>20140613</enddate><creator>Suh, J.</creator><creator>Weinstein, A. J.</creator><creator>Lei, C. U.</creator><creator>Wollman, E. E.</creator><creator>Steinke, S. K.</creator><creator>Meystre, P.</creator><creator>Clerk, A. A.</creator><creator>Schwab, K. C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20140613</creationdate><title>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</title><author>Suh, J. ; Weinstein, A. J. ; Lei, C. U. ; Wollman, E. E. ; Steinke, S. K. ; Meystre, P. ; Clerk, A. A. ; Schwab, K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Circuits</topic><topic>Damping</topic><topic>Fluctuation</topic><topic>Microwave resonance</topic><topic>Microwaves</topic><topic>Miniature</topic><topic>Monitors</topic><topic>Noise measurement</topic><topic>Oscillators</topic><topic>Pumps</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Resonators</topic><topic>Sidebands</topic><topic>Superconductivity</topic><topic>Thermometers</topic><topic>Transition zones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suh, J.</creatorcontrib><creatorcontrib>Weinstein, A. J.</creatorcontrib><creatorcontrib>Lei, C. U.</creatorcontrib><creatorcontrib>Wollman, E. E.</creatorcontrib><creatorcontrib>Steinke, S. K.</creatorcontrib><creatorcontrib>Meystre, P.</creatorcontrib><creatorcontrib>Clerk, A. A.</creatorcontrib><creatorcontrib>Schwab, K. C.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suh, J.</au><au>Weinstein, A. J.</au><au>Lei, C. U.</au><au>Wollman, E. E.</au><au>Steinke, S. K.</au><au>Meystre, P.</au><au>Clerk, A. A.</au><au>Schwab, K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-06-13</date><risdate>2014</risdate><volume>344</volume><issue>6189</issue><spage>1262</spage><epage>1265</epage><pages>1262-1265</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1253258</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-06, Vol.344 (6189), p.1262-1265
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1559675431
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Calibration
Circuits
Damping
Fluctuation
Microwave resonance
Microwaves
Miniature
Monitors
Noise measurement
Oscillators
Pumps
Quantum mechanics
Quantum physics
Quantum theory
Resonators
Sidebands
Superconductivity
Thermometers
Transition zones
title Mechanically detecting and avoiding the quantum fluctuations of a microwave field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20detecting%20and%20avoiding%20the%20quantum%20fluctuations%20of%20a%20microwave%20field&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Suh,%20J.&rft.date=2014-06-13&rft.volume=344&rft.issue=6189&rft.spage=1262&rft.epage=1265&rft.pages=1262-1265&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1253258&rft_dat=%3Cjstor_proqu%3E24744685%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535245521&rft_id=info:pmid/&rft_jstor_id=24744685&rfr_iscdi=true