Mechanically detecting and avoiding the quantum fluctuations of a microwave field
Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-06, Vol.344 (6189), p.1262-1265 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1265 |
---|---|
container_issue | 6189 |
container_start_page | 1262 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 344 |
creator | Suh, J. Weinstein, A. J. Lei, C. U. Wollman, E. E. Steinke, S. K. Meystre, P. Clerk, A. A. Schwab, K. C. |
description | Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion. |
doi_str_mv | 10.1126/science.1253258 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559675431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744685</jstor_id><sourcerecordid>24744685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbPnoQFL17S7kc2yR6l-AWKCHoOm8ms3ZJs2uym0v_elBYPnobH_N4w7xFyzdmMc5HNAzj0gDMulBSqOCETzrRKtGDylEwYk1lSsFydk4sQVoyNOy0n5OMNYWm8A9M0O1pjRIjOf1Pja2q2nav3Ii6Rbgbj49BS2wwQBxNd5wPtLDW0ddB3P2aL1Dps6ktyZk0T8Oo4p-Tr8eFz8Zy8vj-9LO5fE5BMxQRqw02hWMFqnWmBgHYUAiUAMIY1QF5ntuBW6AoE1zKXhapAV5WU0thcTsnd4e667zYDhli2LgA2jfHYDaHkSuksV6nkI3r7D111Q-_H70ZKKpEqJfbU_ECNcULo0Zbr3rWm35WclfuKy2PF5bHi0XFzcKxC7Po_XKR5mmaFkr90lnq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535245521</pqid></control><display><type>article</type><title>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Suh, J. ; Weinstein, A. J. ; Lei, C. U. ; Wollman, E. E. ; Steinke, S. K. ; Meystre, P. ; Clerk, A. A. ; Schwab, K. C.</creator><creatorcontrib>Suh, J. ; Weinstein, A. J. ; Lei, C. U. ; Wollman, E. E. ; Steinke, S. K. ; Meystre, P. ; Clerk, A. A. ; Schwab, K. C.</creatorcontrib><description>Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1253258</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Calibration ; Circuits ; Damping ; Fluctuation ; Microwave resonance ; Microwaves ; Miniature ; Monitors ; Noise measurement ; Oscillators ; Pumps ; Quantum mechanics ; Quantum physics ; Quantum theory ; Resonators ; Sidebands ; Superconductivity ; Thermometers ; Transition zones</subject><ispartof>Science (American Association for the Advancement of Science), 2014-06, Vol.344 (6189), p.1262-1265</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</citedby><cites>FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744685$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744685$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2870,2871,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Suh, J.</creatorcontrib><creatorcontrib>Weinstein, A. J.</creatorcontrib><creatorcontrib>Lei, C. U.</creatorcontrib><creatorcontrib>Wollman, E. E.</creatorcontrib><creatorcontrib>Steinke, S. K.</creatorcontrib><creatorcontrib>Meystre, P.</creatorcontrib><creatorcontrib>Clerk, A. A.</creatorcontrib><creatorcontrib>Schwab, K. C.</creatorcontrib><title>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</title><title>Science (American Association for the Advancement of Science)</title><description>Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.</description><subject>Calibration</subject><subject>Circuits</subject><subject>Damping</subject><subject>Fluctuation</subject><subject>Microwave resonance</subject><subject>Microwaves</subject><subject>Miniature</subject><subject>Monitors</subject><subject>Noise measurement</subject><subject>Oscillators</subject><subject>Pumps</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Resonators</subject><subject>Sidebands</subject><subject>Superconductivity</subject><subject>Thermometers</subject><subject>Transition zones</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxRdRsFbPnoQFL17S7kc2yR6l-AWKCHoOm8ms3ZJs2uym0v_elBYPnobH_N4w7xFyzdmMc5HNAzj0gDMulBSqOCETzrRKtGDylEwYk1lSsFydk4sQVoyNOy0n5OMNYWm8A9M0O1pjRIjOf1Pja2q2nav3Ii6Rbgbj49BS2wwQBxNd5wPtLDW0ddB3P2aL1Dps6ktyZk0T8Oo4p-Tr8eFz8Zy8vj-9LO5fE5BMxQRqw02hWMFqnWmBgHYUAiUAMIY1QF5ntuBW6AoE1zKXhapAV5WU0thcTsnd4e667zYDhli2LgA2jfHYDaHkSuksV6nkI3r7D111Q-_H70ZKKpEqJfbU_ECNcULo0Zbr3rWm35WclfuKy2PF5bHi0XFzcKxC7Po_XKR5mmaFkr90lnq3</recordid><startdate>20140613</startdate><enddate>20140613</enddate><creator>Suh, J.</creator><creator>Weinstein, A. J.</creator><creator>Lei, C. U.</creator><creator>Wollman, E. E.</creator><creator>Steinke, S. K.</creator><creator>Meystre, P.</creator><creator>Clerk, A. A.</creator><creator>Schwab, K. C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20140613</creationdate><title>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</title><author>Suh, J. ; Weinstein, A. J. ; Lei, C. U. ; Wollman, E. E. ; Steinke, S. K. ; Meystre, P. ; Clerk, A. A. ; Schwab, K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-cda1a85080d9692ecef5082e3ccc00edcc7d6f81f29bc21937385bc9bb333af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Circuits</topic><topic>Damping</topic><topic>Fluctuation</topic><topic>Microwave resonance</topic><topic>Microwaves</topic><topic>Miniature</topic><topic>Monitors</topic><topic>Noise measurement</topic><topic>Oscillators</topic><topic>Pumps</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Resonators</topic><topic>Sidebands</topic><topic>Superconductivity</topic><topic>Thermometers</topic><topic>Transition zones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suh, J.</creatorcontrib><creatorcontrib>Weinstein, A. J.</creatorcontrib><creatorcontrib>Lei, C. U.</creatorcontrib><creatorcontrib>Wollman, E. E.</creatorcontrib><creatorcontrib>Steinke, S. K.</creatorcontrib><creatorcontrib>Meystre, P.</creatorcontrib><creatorcontrib>Clerk, A. A.</creatorcontrib><creatorcontrib>Schwab, K. C.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suh, J.</au><au>Weinstein, A. J.</au><au>Lei, C. U.</au><au>Wollman, E. E.</au><au>Steinke, S. K.</au><au>Meystre, P.</au><au>Clerk, A. A.</au><au>Schwab, K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically detecting and avoiding the quantum fluctuations of a microwave field</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2014-06-13</date><risdate>2014</risdate><volume>344</volume><issue>6189</issue><spage>1262</spage><epage>1265</epage><pages>1262-1265</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1253258</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-06, Vol.344 (6189), p.1262-1265 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559675431 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Calibration Circuits Damping Fluctuation Microwave resonance Microwaves Miniature Monitors Noise measurement Oscillators Pumps Quantum mechanics Quantum physics Quantum theory Resonators Sidebands Superconductivity Thermometers Transition zones |
title | Mechanically detecting and avoiding the quantum fluctuations of a microwave field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20detecting%20and%20avoiding%20the%20quantum%20fluctuations%20of%20a%20microwave%20field&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Suh,%20J.&rft.date=2014-06-13&rft.volume=344&rft.issue=6189&rft.spage=1262&rft.epage=1265&rft.pages=1262-1265&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1253258&rft_dat=%3Cjstor_proqu%3E24744685%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535245521&rft_id=info:pmid/&rft_jstor_id=24744685&rfr_iscdi=true |