Reflection of solar wind hydrogen from the lunar surface

The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2013-02, Vol.118 (2), p.292-305
Hauptverfasser: Funsten, H. O., Allegrini, F., Bochsler, P. A., Fuselier, S. A., Gruntman, M., Henderson, K., Janzen, P. H., Johnson, R. E., Larsen, B. A., Lawrence, D. J., McComas, D. J., Möbius, E., Reisenfeld, D. B., Rodríguez, D., Schwadron, N. A., Wurz, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 2
container_start_page 292
container_title Journal of geophysical research. Planets
container_volume 118
creator Funsten, H. O.
Allegrini, F.
Bochsler, P. A.
Fuselier, S. A.
Gruntman, M.
Henderson, K.
Janzen, P. H.
Johnson, R. E.
Larsen, B. A.
Lawrence, D. J.
McComas, D. J.
Möbius, E.
Reisenfeld, D. B.
Rodríguez, D.
Schwadron, N. A.
Wurz, P.
description The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (> 250 eV) of the IBEX‐Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well‐represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust. Key Points Up to 20% of solar wind protons impacting the Moon are reflected as ENAs The reflection probability and the average ENA energy depend on solar wind speed Reflected ENAs can become PUIs and a suprathermal component of the solar wind
doi_str_mv 10.1002/jgre.20055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559669881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559669881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4745-d70d087f7df90e526fd18d9a2a9b1e49bb89f6e98cd5c32d4419b1ae5d7313a33</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhRdRsGgv_oIFLyJsTTabTXKUUlelqBSlx5BuJu3W7aYmu9T-e1NrPXhwLjO8-d4wvCi6wGiAEUpvlnMHgxQhSo-iXopzkYigHx9mJNhp1Pd-iULxIGHSi_gETA1lW9kmtib2tlYu3lSNjhdb7ewcmtg4u4rbBcR114Sl75xRJZxHJ0bVHvo__Sx6uxu9Du-T8XPxMLwdJ2XGMppohjTizDBtBAKa5kZjroVKlZhhyMRsxoXJQfBS05KkOstwWCigmhFMFCFn0dX-7trZjw58K1eVL6GuVQO28xJTKvJccI4DevkHXdrONeE7iXPCM8QQEoG63lOls947MHLtqpVyW4mR3OUodznK7xwDjPfwpqph-w8pH4vJ6OBJ9p7Kt_D561HuXeaMMCqnT4V8EQUR04JITr4AQhyCgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638407009</pqid></control><display><type>article</type><title>Reflection of solar wind hydrogen from the lunar surface</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Funsten, H. O. ; Allegrini, F. ; Bochsler, P. A. ; Fuselier, S. A. ; Gruntman, M. ; Henderson, K. ; Janzen, P. H. ; Johnson, R. E. ; Larsen, B. A. ; Lawrence, D. J. ; McComas, D. J. ; Möbius, E. ; Reisenfeld, D. B. ; Rodríguez, D. ; Schwadron, N. A. ; Wurz, P.</creator><creatorcontrib>Funsten, H. O. ; Allegrini, F. ; Bochsler, P. A. ; Fuselier, S. A. ; Gruntman, M. ; Henderson, K. ; Janzen, P. H. ; Johnson, R. E. ; Larsen, B. A. ; Lawrence, D. J. ; McComas, D. J. ; Möbius, E. ; Reisenfeld, D. B. ; Rodríguez, D. ; Schwadron, N. A. ; Wurz, P.</creatorcontrib><description>The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (&gt; 250 eV) of the IBEX‐Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well‐represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust. Key Points Up to 20% of solar wind protons impacting the Moon are reflected as ENAs The reflection probability and the average ENA energy depend on solar wind speed Reflected ENAs can become PUIs and a suprathermal component of the solar wind</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1002/jgre.20055</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Albedo ; Charged particles ; Dust ; Emissions ; ENA ; Ions ; Moon ; PUIs ; reflection ; Solar energy ; Solar system ; solar wind ; Wind speed</subject><ispartof>Journal of geophysical research. Planets, 2013-02, Vol.118 (2), p.292-305</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4745-d70d087f7df90e526fd18d9a2a9b1e49bb89f6e98cd5c32d4419b1ae5d7313a33</citedby><cites>FETCH-LOGICAL-c4745-d70d087f7df90e526fd18d9a2a9b1e49bb89f6e98cd5c32d4419b1ae5d7313a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgre.20055$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgre.20055$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Funsten, H. O.</creatorcontrib><creatorcontrib>Allegrini, F.</creatorcontrib><creatorcontrib>Bochsler, P. A.</creatorcontrib><creatorcontrib>Fuselier, S. A.</creatorcontrib><creatorcontrib>Gruntman, M.</creatorcontrib><creatorcontrib>Henderson, K.</creatorcontrib><creatorcontrib>Janzen, P. H.</creatorcontrib><creatorcontrib>Johnson, R. E.</creatorcontrib><creatorcontrib>Larsen, B. A.</creatorcontrib><creatorcontrib>Lawrence, D. J.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Möbius, E.</creatorcontrib><creatorcontrib>Reisenfeld, D. B.</creatorcontrib><creatorcontrib>Rodríguez, D.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><creatorcontrib>Wurz, P.</creatorcontrib><title>Reflection of solar wind hydrogen from the lunar surface</title><title>Journal of geophysical research. Planets</title><addtitle>J. Geophys. Res. Planets</addtitle><description>The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (&gt; 250 eV) of the IBEX‐Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well‐represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust. Key Points Up to 20% of solar wind protons impacting the Moon are reflected as ENAs The reflection probability and the average ENA energy depend on solar wind speed Reflected ENAs can become PUIs and a suprathermal component of the solar wind</description><subject>Albedo</subject><subject>Charged particles</subject><subject>Dust</subject><subject>Emissions</subject><subject>ENA</subject><subject>Ions</subject><subject>Moon</subject><subject>PUIs</subject><subject>reflection</subject><subject>Solar energy</subject><subject>Solar system</subject><subject>solar wind</subject><subject>Wind speed</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEFLAzEQhRdRsGgv_oIFLyJsTTabTXKUUlelqBSlx5BuJu3W7aYmu9T-e1NrPXhwLjO8-d4wvCi6wGiAEUpvlnMHgxQhSo-iXopzkYigHx9mJNhp1Pd-iULxIGHSi_gETA1lW9kmtib2tlYu3lSNjhdb7ewcmtg4u4rbBcR114Sl75xRJZxHJ0bVHvo__Sx6uxu9Du-T8XPxMLwdJ2XGMppohjTizDBtBAKa5kZjroVKlZhhyMRsxoXJQfBS05KkOstwWCigmhFMFCFn0dX-7trZjw58K1eVL6GuVQO28xJTKvJccI4DevkHXdrONeE7iXPCM8QQEoG63lOls947MHLtqpVyW4mR3OUodznK7xwDjPfwpqph-w8pH4vJ6OBJ9p7Kt_D561HuXeaMMCqnT4V8EQUR04JITr4AQhyCgg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Funsten, H. O.</creator><creator>Allegrini, F.</creator><creator>Bochsler, P. A.</creator><creator>Fuselier, S. A.</creator><creator>Gruntman, M.</creator><creator>Henderson, K.</creator><creator>Janzen, P. H.</creator><creator>Johnson, R. E.</creator><creator>Larsen, B. A.</creator><creator>Lawrence, D. J.</creator><creator>McComas, D. J.</creator><creator>Möbius, E.</creator><creator>Reisenfeld, D. B.</creator><creator>Rodríguez, D.</creator><creator>Schwadron, N. A.</creator><creator>Wurz, P.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201302</creationdate><title>Reflection of solar wind hydrogen from the lunar surface</title><author>Funsten, H. O. ; Allegrini, F. ; Bochsler, P. A. ; Fuselier, S. A. ; Gruntman, M. ; Henderson, K. ; Janzen, P. H. ; Johnson, R. E. ; Larsen, B. A. ; Lawrence, D. J. ; McComas, D. J. ; Möbius, E. ; Reisenfeld, D. B. ; Rodríguez, D. ; Schwadron, N. A. ; Wurz, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4745-d70d087f7df90e526fd18d9a2a9b1e49bb89f6e98cd5c32d4419b1ae5d7313a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Albedo</topic><topic>Charged particles</topic><topic>Dust</topic><topic>Emissions</topic><topic>ENA</topic><topic>Ions</topic><topic>Moon</topic><topic>PUIs</topic><topic>reflection</topic><topic>Solar energy</topic><topic>Solar system</topic><topic>solar wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funsten, H. O.</creatorcontrib><creatorcontrib>Allegrini, F.</creatorcontrib><creatorcontrib>Bochsler, P. A.</creatorcontrib><creatorcontrib>Fuselier, S. A.</creatorcontrib><creatorcontrib>Gruntman, M.</creatorcontrib><creatorcontrib>Henderson, K.</creatorcontrib><creatorcontrib>Janzen, P. H.</creatorcontrib><creatorcontrib>Johnson, R. E.</creatorcontrib><creatorcontrib>Larsen, B. A.</creatorcontrib><creatorcontrib>Lawrence, D. J.</creatorcontrib><creatorcontrib>McComas, D. J.</creatorcontrib><creatorcontrib>Möbius, E.</creatorcontrib><creatorcontrib>Reisenfeld, D. B.</creatorcontrib><creatorcontrib>Rodríguez, D.</creatorcontrib><creatorcontrib>Schwadron, N. A.</creatorcontrib><creatorcontrib>Wurz, P.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funsten, H. O.</au><au>Allegrini, F.</au><au>Bochsler, P. A.</au><au>Fuselier, S. A.</au><au>Gruntman, M.</au><au>Henderson, K.</au><au>Janzen, P. H.</au><au>Johnson, R. E.</au><au>Larsen, B. A.</au><au>Lawrence, D. J.</au><au>McComas, D. J.</au><au>Möbius, E.</au><au>Reisenfeld, D. B.</au><au>Rodríguez, D.</au><au>Schwadron, N. A.</au><au>Wurz, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflection of solar wind hydrogen from the lunar surface</atitle><jtitle>Journal of geophysical research. Planets</jtitle><addtitle>J. Geophys. Res. Planets</addtitle><date>2013-02</date><risdate>2013</risdate><volume>118</volume><issue>2</issue><spage>292</spage><epage>305</epage><pages>292-305</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (&gt; 250 eV) of the IBEX‐Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well‐represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust. Key Points Up to 20% of solar wind protons impacting the Moon are reflected as ENAs The reflection probability and the average ENA energy depend on solar wind speed Reflected ENAs can become PUIs and a suprathermal component of the solar wind</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgre.20055</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2013-02, Vol.118 (2), p.292-305
issn 2169-9097
2169-9100
language eng
recordid cdi_proquest_miscellaneous_1559669881
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Albedo
Charged particles
Dust
Emissions
ENA
Ions
Moon
PUIs
reflection
Solar energy
Solar system
solar wind
Wind speed
title Reflection of solar wind hydrogen from the lunar surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflection%20of%20solar%20wind%20hydrogen%20from%20the%20lunar%20surface&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Funsten,%20H.%20O.&rft.date=2013-02&rft.volume=118&rft.issue=2&rft.spage=292&rft.epage=305&rft.pages=292-305&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1002/jgre.20055&rft_dat=%3Cproquest_cross%3E1559669881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638407009&rft_id=info:pmid/&rfr_iscdi=true