Thermal conductivity and characterization of compacted, granular silica aerogel

•Compaction decreases the conductivity of aerogels from 24 to 13mW/(mK).•13mW/(mK) is comparable to values for monolithic silica aerogels.•There is an optimum level of compaction to minimize thermal conductivity. Monolithic silica aerogels are well known for their low thermal conductivity (approxima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2014-08, Vol.79, p.47-57
Hauptverfasser: Neugebauer, A., Chen, K., Tang, A., Allgeier, A., Glicksman, L.R., Gibson, L.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 47
container_title Energy and buildings
container_volume 79
creator Neugebauer, A.
Chen, K.
Tang, A.
Allgeier, A.
Glicksman, L.R.
Gibson, L.J.
description •Compaction decreases the conductivity of aerogels from 24 to 13mW/(mK).•13mW/(mK) is comparable to values for monolithic silica aerogels.•There is an optimum level of compaction to minimize thermal conductivity. Monolithic silica aerogels are well known for their low thermal conductivity (approximately 15mW/(mK)) (Aegerter et al. (Eds.), 2011. Aerogels Handbook, first ed., Springer-Verlag New York, LLC, New York, NY). Their low relative density (typically less than 5%) reduces conduction through the solid and their small pore size, typically less than one hundred nanometers, on the order of the mean free path of air, reduces conduction through air, as well as convection and radiation. As they are fragile and brittle, they are often used in a granular form in thermal insulation, with some increase in their thermal conductivity from the air between the granules. Here, we describe a technique for compacting a bed of granular silica aerogel that reduces the thermal conductivity from 24mW/(mK) (when uncompacted) to 13mW/(mK) (after compaction). We find that there is an optimum level of compaction to minimize the thermal conductivity: at higher levels of compaction, the contact area between the granules increases and the granules densify, increasing conduction through the solid.
doi_str_mv 10.1016/j.enbuild.2014.04.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559662341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778814003351</els_id><sourcerecordid>1559662341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-fb395f3d894a36b2d3a87949cc8e2f3304b68efa21667cb3dc7185e315b6fc7f3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxXtQ8PNPEHoRPLhr0jQfPYmIXyB40XOYTia7WbLtmrSC_vV22cWr8GBg-L0Z3iuKC87mnHF1s5pT144hunnFeD1nkyp5UBwzoc1Ma2OOipOcV4wxJTU_Lt7el5TWEEvsOzfiEL7C8F1C50pcQgIcKIUfGELflb2foPVmu3PX5SJBN0ZIZQ4xIJRAqV9QPCsOPcRM5_t5Wnw8PrzfP89e355e7u9eZ1jzZpj5VjTSC2eaGoRqKyfA6KZuEA1VXghWt8qQh4orpbEVDjU3kgSXrfKovTgtrnZ3N6n_HCkPdh0yUozQUT9my6VslKpEzSdU7lBMfc6JvN2ksIb0bTmz29Lsyu5Ls9vSLJtUycl3uX8BGSH6KTCG_GeujFSN0GribnccTXm_AiWbMVCH5EIiHKzrwz-ffgH-MIhV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559662341</pqid></control><display><type>article</type><title>Thermal conductivity and characterization of compacted, granular silica aerogel</title><source>Elsevier ScienceDirect Journals</source><creator>Neugebauer, A. ; Chen, K. ; Tang, A. ; Allgeier, A. ; Glicksman, L.R. ; Gibson, L.J.</creator><creatorcontrib>Neugebauer, A. ; Chen, K. ; Tang, A. ; Allgeier, A. ; Glicksman, L.R. ; Gibson, L.J.</creatorcontrib><description>•Compaction decreases the conductivity of aerogels from 24 to 13mW/(mK).•13mW/(mK) is comparable to values for monolithic silica aerogels.•There is an optimum level of compaction to minimize thermal conductivity. Monolithic silica aerogels are well known for their low thermal conductivity (approximately 15mW/(mK)) (Aegerter et al. (Eds.), 2011. Aerogels Handbook, first ed., Springer-Verlag New York, LLC, New York, NY). Their low relative density (typically less than 5%) reduces conduction through the solid and their small pore size, typically less than one hundred nanometers, on the order of the mean free path of air, reduces conduction through air, as well as convection and radiation. As they are fragile and brittle, they are often used in a granular form in thermal insulation, with some increase in their thermal conductivity from the air between the granules. Here, we describe a technique for compacting a bed of granular silica aerogel that reduces the thermal conductivity from 24mW/(mK) (when uncompacted) to 13mW/(mK) (after compaction). We find that there is an optimum level of compaction to minimize the thermal conductivity: at higher levels of compaction, the contact area between the granules increases and the granules densify, increasing conduction through the solid.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2014.04.025</identifier><identifier>CODEN: ENEBDR</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Aerogels ; Applied sciences ; Buildings. Public works ; Cellular materials ; Compacting ; Density ; Exact sciences and technology ; Fracture ; Granular materials ; Granular silica ; Granules ; Heat transfer ; Materials ; Miscellaneous (including polymer concrete, repair and maintenance products, etc.) ; Porous materials ; Strain measurement ; Strength of materials (elasticity, plasticity, buckling, etc.) ; Structural analysis. Stresses ; Thermal conductivity ; Tomography</subject><ispartof>Energy and buildings, 2014-08, Vol.79, p.47-57</ispartof><rights>2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-fb395f3d894a36b2d3a87949cc8e2f3304b68efa21667cb3dc7185e315b6fc7f3</citedby><cites>FETCH-LOGICAL-c419t-fb395f3d894a36b2d3a87949cc8e2f3304b68efa21667cb3dc7185e315b6fc7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378778814003351$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28569376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neugebauer, A.</creatorcontrib><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Tang, A.</creatorcontrib><creatorcontrib>Allgeier, A.</creatorcontrib><creatorcontrib>Glicksman, L.R.</creatorcontrib><creatorcontrib>Gibson, L.J.</creatorcontrib><title>Thermal conductivity and characterization of compacted, granular silica aerogel</title><title>Energy and buildings</title><description>•Compaction decreases the conductivity of aerogels from 24 to 13mW/(mK).•13mW/(mK) is comparable to values for monolithic silica aerogels.•There is an optimum level of compaction to minimize thermal conductivity. Monolithic silica aerogels are well known for their low thermal conductivity (approximately 15mW/(mK)) (Aegerter et al. (Eds.), 2011. Aerogels Handbook, first ed., Springer-Verlag New York, LLC, New York, NY). Their low relative density (typically less than 5%) reduces conduction through the solid and their small pore size, typically less than one hundred nanometers, on the order of the mean free path of air, reduces conduction through air, as well as convection and radiation. As they are fragile and brittle, they are often used in a granular form in thermal insulation, with some increase in their thermal conductivity from the air between the granules. Here, we describe a technique for compacting a bed of granular silica aerogel that reduces the thermal conductivity from 24mW/(mK) (when uncompacted) to 13mW/(mK) (after compaction). We find that there is an optimum level of compaction to minimize the thermal conductivity: at higher levels of compaction, the contact area between the granules increases and the granules densify, increasing conduction through the solid.</description><subject>Aerogels</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Cellular materials</subject><subject>Compacting</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Granular materials</subject><subject>Granular silica</subject><subject>Granules</subject><subject>Heat transfer</subject><subject>Materials</subject><subject>Miscellaneous (including polymer concrete, repair and maintenance products, etc.)</subject><subject>Porous materials</subject><subject>Strain measurement</subject><subject>Strength of materials (elasticity, plasticity, buckling, etc.)</subject><subject>Structural analysis. Stresses</subject><subject>Thermal conductivity</subject><subject>Tomography</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxXtQ8PNPEHoRPLhr0jQfPYmIXyB40XOYTia7WbLtmrSC_vV22cWr8GBg-L0Z3iuKC87mnHF1s5pT144hunnFeD1nkyp5UBwzoc1Ma2OOipOcV4wxJTU_Lt7el5TWEEvsOzfiEL7C8F1C50pcQgIcKIUfGELflb2foPVmu3PX5SJBN0ZIZQ4xIJRAqV9QPCsOPcRM5_t5Wnw8PrzfP89e355e7u9eZ1jzZpj5VjTSC2eaGoRqKyfA6KZuEA1VXghWt8qQh4orpbEVDjU3kgSXrfKovTgtrnZ3N6n_HCkPdh0yUozQUT9my6VslKpEzSdU7lBMfc6JvN2ksIb0bTmz29Lsyu5Ls9vSLJtUycl3uX8BGSH6KTCG_GeujFSN0GribnccTXm_AiWbMVCH5EIiHKzrwz-ffgH-MIhV</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Neugebauer, A.</creator><creator>Chen, K.</creator><creator>Tang, A.</creator><creator>Allgeier, A.</creator><creator>Glicksman, L.R.</creator><creator>Gibson, L.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Thermal conductivity and characterization of compacted, granular silica aerogel</title><author>Neugebauer, A. ; Chen, K. ; Tang, A. ; Allgeier, A. ; Glicksman, L.R. ; Gibson, L.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-fb395f3d894a36b2d3a87949cc8e2f3304b68efa21667cb3dc7185e315b6fc7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerogels</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Cellular materials</topic><topic>Compacting</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Granular materials</topic><topic>Granular silica</topic><topic>Granules</topic><topic>Heat transfer</topic><topic>Materials</topic><topic>Miscellaneous (including polymer concrete, repair and maintenance products, etc.)</topic><topic>Porous materials</topic><topic>Strain measurement</topic><topic>Strength of materials (elasticity, plasticity, buckling, etc.)</topic><topic>Structural analysis. Stresses</topic><topic>Thermal conductivity</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neugebauer, A.</creatorcontrib><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Tang, A.</creatorcontrib><creatorcontrib>Allgeier, A.</creatorcontrib><creatorcontrib>Glicksman, L.R.</creatorcontrib><creatorcontrib>Gibson, L.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neugebauer, A.</au><au>Chen, K.</au><au>Tang, A.</au><au>Allgeier, A.</au><au>Glicksman, L.R.</au><au>Gibson, L.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity and characterization of compacted, granular silica aerogel</atitle><jtitle>Energy and buildings</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>79</volume><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>0378-7788</issn><coden>ENEBDR</coden><abstract>•Compaction decreases the conductivity of aerogels from 24 to 13mW/(mK).•13mW/(mK) is comparable to values for monolithic silica aerogels.•There is an optimum level of compaction to minimize thermal conductivity. Monolithic silica aerogels are well known for their low thermal conductivity (approximately 15mW/(mK)) (Aegerter et al. (Eds.), 2011. Aerogels Handbook, first ed., Springer-Verlag New York, LLC, New York, NY). Their low relative density (typically less than 5%) reduces conduction through the solid and their small pore size, typically less than one hundred nanometers, on the order of the mean free path of air, reduces conduction through air, as well as convection and radiation. As they are fragile and brittle, they are often used in a granular form in thermal insulation, with some increase in their thermal conductivity from the air between the granules. Here, we describe a technique for compacting a bed of granular silica aerogel that reduces the thermal conductivity from 24mW/(mK) (when uncompacted) to 13mW/(mK) (after compaction). We find that there is an optimum level of compaction to minimize the thermal conductivity: at higher levels of compaction, the contact area between the granules increases and the granules densify, increasing conduction through the solid.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2014.04.025</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2014-08, Vol.79, p.47-57
issn 0378-7788
language eng
recordid cdi_proquest_miscellaneous_1559662341
source Elsevier ScienceDirect Journals
subjects Aerogels
Applied sciences
Buildings. Public works
Cellular materials
Compacting
Density
Exact sciences and technology
Fracture
Granular materials
Granular silica
Granules
Heat transfer
Materials
Miscellaneous (including polymer concrete, repair and maintenance products, etc.)
Porous materials
Strain measurement
Strength of materials (elasticity, plasticity, buckling, etc.)
Structural analysis. Stresses
Thermal conductivity
Tomography
title Thermal conductivity and characterization of compacted, granular silica aerogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20and%20characterization%20of%20compacted,%20granular%20silica%20aerogel&rft.jtitle=Energy%20and%20buildings&rft.au=Neugebauer,%20A.&rft.date=2014-08-01&rft.volume=79&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=0378-7788&rft.coden=ENEBDR&rft_id=info:doi/10.1016/j.enbuild.2014.04.025&rft_dat=%3Cproquest_cross%3E1559662341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559662341&rft_id=info:pmid/&rft_els_id=S0378778814003351&rfr_iscdi=true