Li-decorated double vacancy graphene for hydrogen storage application: A first principles study
Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functio...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-07, Vol.39 (21), p.11016-11026 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11026 |
---|---|
container_issue | 21 |
container_start_page | 11016 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | Seenithurai, S. Pandyan, R. Kodi Kumar, S. Vinodh Saranya, C. Mahendran, M. |
description | Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.
•H2 adsorption in Li-decorated double vacancy graphene (DVG-Li) has been studied.•DVG binds Li stronger than mono vacancy/B-doped graphene.•The maximum storage capacity is 7.26 wt% with a binding energy of 0.26 eV/H2.•DVG-Li could be useful for hydrogen storage applications at ambient condition. |
doi_str_mv | 10.1016/j.ijhydene.2014.05.068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559657710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914014165</els_id><sourcerecordid>1559657710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6b645a768432d1975ae7237d7a7d943d67e12c1d4a1ce3fc86401baa2f3aafbb3</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhomgAeqm-QsFlwBdpJDil9SpgdEmBQx0aWbiRJ5sGoqokrIB__vQcNo10y3Pve_dQ8gXzmrOuL7f12G_O3mcsG4YlzVTNdPtFVnx1nSVkK35QFZMaFYJ3nUfyaec94xxw2S3InYTKo8uJljQUx8P_Yj0CA4md6LbBPOu5NIhJloqUtziRPNS6C1SmOcxOFhCnL7RBzqElBc6pzC5MI-YC3fwp8_keoAx4-3bvCHPP3_8WT9Vm9-Pv9YPm8pJqZZK91oqMLqVovG8MwrQNMJ4A8Z3UnhtkDeOewncoRhcqyXjPUAzCICh78UN-XrJnVP8e8C82JeQHY4jTBgP2XKlOq2M4ayg-oK6FHNOONhy9Aukk-XMno3avf1n1J6NWqZsMVoW7946IDsYh1Qkhfx_u2mVbrXqCvf9wmF5-Bgw2ewCTg59SOgW62N4r-oVH4eRXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559657710</pqid></control><display><type>article</type><title>Li-decorated double vacancy graphene for hydrogen storage application: A first principles study</title><source>Elsevier ScienceDirect Journals</source><creator>Seenithurai, S. ; Pandyan, R. Kodi ; Kumar, S. Vinodh ; Saranya, C. ; Mahendran, M.</creator><creatorcontrib>Seenithurai, S. ; Pandyan, R. Kodi ; Kumar, S. Vinodh ; Saranya, C. ; Mahendran, M.</creatorcontrib><description>Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.
•H2 adsorption in Li-decorated double vacancy graphene (DVG-Li) has been studied.•DVG binds Li stronger than mono vacancy/B-doped graphene.•The maximum storage capacity is 7.26 wt% with a binding energy of 0.26 eV/H2.•DVG-Li could be useful for hydrogen storage applications at ambient condition.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.05.068</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adsorption ; Alternative fuels. Production and utilization ; Applied sciences ; Binding energy ; Carbon ; Decoration ; Defected graphene ; DFT ; Energy ; Exact sciences and technology ; Fuels ; Graphene ; Hydrogen ; Hydrogen storage ; Hydrogen-based energy ; Li-decoration ; Storage capacity ; Vacancies</subject><ispartof>International journal of hydrogen energy, 2014-07, Vol.39 (21), p.11016-11026</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6b645a768432d1975ae7237d7a7d943d67e12c1d4a1ce3fc86401baa2f3aafbb3</citedby><cites>FETCH-LOGICAL-c445t-6b645a768432d1975ae7237d7a7d943d67e12c1d4a1ce3fc86401baa2f3aafbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319914014165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28568659$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seenithurai, S.</creatorcontrib><creatorcontrib>Pandyan, R. Kodi</creatorcontrib><creatorcontrib>Kumar, S. Vinodh</creatorcontrib><creatorcontrib>Saranya, C.</creatorcontrib><creatorcontrib>Mahendran, M.</creatorcontrib><title>Li-decorated double vacancy graphene for hydrogen storage application: A first principles study</title><title>International journal of hydrogen energy</title><description>Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.
•H2 adsorption in Li-decorated double vacancy graphene (DVG-Li) has been studied.•DVG binds Li stronger than mono vacancy/B-doped graphene.•The maximum storage capacity is 7.26 wt% with a binding energy of 0.26 eV/H2.•DVG-Li could be useful for hydrogen storage applications at ambient condition.</description><subject>Adsorption</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Binding energy</subject><subject>Carbon</subject><subject>Decoration</subject><subject>Defected graphene</subject><subject>DFT</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Graphene</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>Li-decoration</subject><subject>Storage capacity</subject><subject>Vacancies</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1v2zAQhomgAeqm-QsFlwBdpJDil9SpgdEmBQx0aWbiRJ5sGoqokrIB__vQcNo10y3Pve_dQ8gXzmrOuL7f12G_O3mcsG4YlzVTNdPtFVnx1nSVkK35QFZMaFYJ3nUfyaec94xxw2S3InYTKo8uJljQUx8P_Yj0CA4md6LbBPOu5NIhJloqUtziRPNS6C1SmOcxOFhCnL7RBzqElBc6pzC5MI-YC3fwp8_keoAx4-3bvCHPP3_8WT9Vm9-Pv9YPm8pJqZZK91oqMLqVovG8MwrQNMJ4A8Z3UnhtkDeOewncoRhcqyXjPUAzCICh78UN-XrJnVP8e8C82JeQHY4jTBgP2XKlOq2M4ayg-oK6FHNOONhy9Aukk-XMno3avf1n1J6NWqZsMVoW7946IDsYh1Qkhfx_u2mVbrXqCvf9wmF5-Bgw2ewCTg59SOgW62N4r-oVH4eRXA</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Seenithurai, S.</creator><creator>Pandyan, R. Kodi</creator><creator>Kumar, S. Vinodh</creator><creator>Saranya, C.</creator><creator>Mahendran, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140715</creationdate><title>Li-decorated double vacancy graphene for hydrogen storage application: A first principles study</title><author>Seenithurai, S. ; Pandyan, R. Kodi ; Kumar, S. Vinodh ; Saranya, C. ; Mahendran, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6b645a768432d1975ae7237d7a7d943d67e12c1d4a1ce3fc86401baa2f3aafbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Binding energy</topic><topic>Carbon</topic><topic>Decoration</topic><topic>Defected graphene</topic><topic>DFT</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Graphene</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>Li-decoration</topic><topic>Storage capacity</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seenithurai, S.</creatorcontrib><creatorcontrib>Pandyan, R. Kodi</creatorcontrib><creatorcontrib>Kumar, S. Vinodh</creatorcontrib><creatorcontrib>Saranya, C.</creatorcontrib><creatorcontrib>Mahendran, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seenithurai, S.</au><au>Pandyan, R. Kodi</au><au>Kumar, S. Vinodh</au><au>Saranya, C.</au><au>Mahendran, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-decorated double vacancy graphene for hydrogen storage application: A first principles study</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-07-15</date><risdate>2014</risdate><volume>39</volume><issue>21</issue><spage>11016</spage><epage>11026</epage><pages>11016-11026</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.
•H2 adsorption in Li-decorated double vacancy graphene (DVG-Li) has been studied.•DVG binds Li stronger than mono vacancy/B-doped graphene.•The maximum storage capacity is 7.26 wt% with a binding energy of 0.26 eV/H2.•DVG-Li could be useful for hydrogen storage applications at ambient condition.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.05.068</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-07, Vol.39 (21), p.11016-11026 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559657710 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Alternative fuels. Production and utilization Applied sciences Binding energy Carbon Decoration Defected graphene DFT Energy Exact sciences and technology Fuels Graphene Hydrogen Hydrogen storage Hydrogen-based energy Li-decoration Storage capacity Vacancies |
title | Li-decorated double vacancy graphene for hydrogen storage application: A first principles study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-decorated%20double%20vacancy%20graphene%20for%20hydrogen%20storage%20application:%20A%20first%20principles%20study&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Seenithurai,%20S.&rft.date=2014-07-15&rft.volume=39&rft.issue=21&rft.spage=11016&rft.epage=11026&rft.pages=11016-11026&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.05.068&rft_dat=%3Cproquest_cross%3E1559657710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559657710&rft_id=info:pmid/&rft_els_id=S0360319914014165&rfr_iscdi=true |