Nonoverlapping discretization methods for partial differential equations

Ideally, domain decomposition methods (DDMs) seek what we call the DDM‐paradigm: “constructing the ‘global' solution by solving ‘local' problems, exclusively”. To achieve it, it is essential to disconnect the subdomain problems. This explains in part the success of nonoverlapping DDMs. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2014-09, Vol.30 (5), p.1427-1454
Hauptverfasser: Herrera, Ismael, de la Cruz, Luis M., Rosas-Medina, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1454
container_issue 5
container_start_page 1427
container_title Numerical methods for partial differential equations
container_volume 30
creator Herrera, Ismael
de la Cruz, Luis M.
Rosas-Medina, Alberto
description Ideally, domain decomposition methods (DDMs) seek what we call the DDM‐paradigm: “constructing the ‘global' solution by solving ‘local' problems, exclusively”. To achieve it, it is essential to disconnect the subdomain problems. This explains in part the success of nonoverlapping DDMs. However, in this kind of methods, different subdomains are linked by interface nodes that are shared by several subdomains. Discretization procedures for partial differential equations of a new kind, in which each node belongs to one and only one coarse‐mesh subdomain, are here introduced and analyzed. A discretization method of this type was very successfully used to develop the derived vector‐space‐framework. Using it, it is possible to develop algorithms that satisfy the DDM‐paradigm. Other enhanced numerical and computational properties of them are also discussed. © 2014 The Authors. Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. 30: 1427–1454, 2014
doi_str_mv 10.1002/num.21852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559657006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559657006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4732-2557f4fbf9c3dc0f7506ae3502f9abd15006b086aeaea9ee13c6804fce98f5753</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs7pwW9Q8KKHbknbNM1RhtuEbV4cegtZ-6KZbVOTVp2f3mxTD4IEEl74_R-Ph9A5wQOCcTSsu2oQkYxGB6hHMM_CKInSQ9TDLOEhofzxGJ04t8aYEEp4D00XpjZvYEvZNLp-Cgrtcgut_pStNnVQQftsChcoY4NG2lbL0hOlwEK9K-C120l3io6ULB2cfb99tBzf3I-m4exucju6noV5wuIojChlKlErxfO4yLFiFKcSYoojxeWqIBTjdIUz_-cPByBxnmY4UTnwTFFG4z663PdtrHntwLWi8iNDWcoaTOcEoZSnlPk2nl78oWvT2dpP51WSJf5Kt-pqr3JrnLOgRGN1Je1GECy2OxV-p2K3U2-He_uuS9j8D8ViOf9JhPuEdi18_CakfREpixkVD4uJ4GwyH2U8EeP4C0rOiEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548415466</pqid></control><display><type>article</type><title>Nonoverlapping discretization methods for partial differential equations</title><source>Wiley Online Library All Journals</source><creator>Herrera, Ismael ; de la Cruz, Luis M. ; Rosas-Medina, Alberto</creator><creatorcontrib>Herrera, Ismael ; de la Cruz, Luis M. ; Rosas-Medina, Alberto</creatorcontrib><description>Ideally, domain decomposition methods (DDMs) seek what we call the DDM‐paradigm: “constructing the ‘global' solution by solving ‘local' problems, exclusively”. To achieve it, it is essential to disconnect the subdomain problems. This explains in part the success of nonoverlapping DDMs. However, in this kind of methods, different subdomains are linked by interface nodes that are shared by several subdomains. Discretization procedures for partial differential equations of a new kind, in which each node belongs to one and only one coarse‐mesh subdomain, are here introduced and analyzed. A discretization method of this type was very successfully used to develop the derived vector‐space‐framework. Using it, it is possible to develop algorithms that satisfy the DDM‐paradigm. Other enhanced numerical and computational properties of them are also discussed. © 2014 The Authors. Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. 30: 1427–1454, 2014</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.21852</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>100%-parallel algorithms ; Algorithms ; Coarsening ; Construction ; DDM with constraints ; Discretization ; Domain decomposition methods ; Mathematical models ; nonoverlapping DDM ; Numerical analysis ; parallel-computation ; Partial differential equations ; PDE-solution-methods</subject><ispartof>Numerical methods for partial differential equations, 2014-09, Vol.30 (5), p.1427-1454</ispartof><rights>2014 The Authors. Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4732-2557f4fbf9c3dc0f7506ae3502f9abd15006b086aeaea9ee13c6804fce98f5753</citedby><cites>FETCH-LOGICAL-c4732-2557f4fbf9c3dc0f7506ae3502f9abd15006b086aeaea9ee13c6804fce98f5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.21852$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.21852$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Herrera, Ismael</creatorcontrib><creatorcontrib>de la Cruz, Luis M.</creatorcontrib><creatorcontrib>Rosas-Medina, Alberto</creatorcontrib><title>Nonoverlapping discretization methods for partial differential equations</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>Ideally, domain decomposition methods (DDMs) seek what we call the DDM‐paradigm: “constructing the ‘global' solution by solving ‘local' problems, exclusively”. To achieve it, it is essential to disconnect the subdomain problems. This explains in part the success of nonoverlapping DDMs. However, in this kind of methods, different subdomains are linked by interface nodes that are shared by several subdomains. Discretization procedures for partial differential equations of a new kind, in which each node belongs to one and only one coarse‐mesh subdomain, are here introduced and analyzed. A discretization method of this type was very successfully used to develop the derived vector‐space‐framework. Using it, it is possible to develop algorithms that satisfy the DDM‐paradigm. Other enhanced numerical and computational properties of them are also discussed. © 2014 The Authors. Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. 30: 1427–1454, 2014</description><subject>100%-parallel algorithms</subject><subject>Algorithms</subject><subject>Coarsening</subject><subject>Construction</subject><subject>DDM with constraints</subject><subject>Discretization</subject><subject>Domain decomposition methods</subject><subject>Mathematical models</subject><subject>nonoverlapping DDM</subject><subject>Numerical analysis</subject><subject>parallel-computation</subject><subject>Partial differential equations</subject><subject>PDE-solution-methods</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10EFLwzAUB_AgCs7pwW9Q8KKHbknbNM1RhtuEbV4cegtZ-6KZbVOTVp2f3mxTD4IEEl74_R-Ph9A5wQOCcTSsu2oQkYxGB6hHMM_CKInSQ9TDLOEhofzxGJ04t8aYEEp4D00XpjZvYEvZNLp-Cgrtcgut_pStNnVQQftsChcoY4NG2lbL0hOlwEK9K-C120l3io6ULB2cfb99tBzf3I-m4exucju6noV5wuIojChlKlErxfO4yLFiFKcSYoojxeWqIBTjdIUz_-cPByBxnmY4UTnwTFFG4z663PdtrHntwLWi8iNDWcoaTOcEoZSnlPk2nl78oWvT2dpP51WSJf5Kt-pqr3JrnLOgRGN1Je1GECy2OxV-p2K3U2-He_uuS9j8D8ViOf9JhPuEdi18_CakfREpixkVD4uJ4GwyH2U8EeP4C0rOiEk</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Herrera, Ismael</creator><creator>de la Cruz, Luis M.</creator><creator>Rosas-Medina, Alberto</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201409</creationdate><title>Nonoverlapping discretization methods for partial differential equations</title><author>Herrera, Ismael ; de la Cruz, Luis M. ; Rosas-Medina, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4732-2557f4fbf9c3dc0f7506ae3502f9abd15006b086aeaea9ee13c6804fce98f5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>100%-parallel algorithms</topic><topic>Algorithms</topic><topic>Coarsening</topic><topic>Construction</topic><topic>DDM with constraints</topic><topic>Discretization</topic><topic>Domain decomposition methods</topic><topic>Mathematical models</topic><topic>nonoverlapping DDM</topic><topic>Numerical analysis</topic><topic>parallel-computation</topic><topic>Partial differential equations</topic><topic>PDE-solution-methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, Ismael</creatorcontrib><creatorcontrib>de la Cruz, Luis M.</creatorcontrib><creatorcontrib>Rosas-Medina, Alberto</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, Ismael</au><au>de la Cruz, Luis M.</au><au>Rosas-Medina, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonoverlapping discretization methods for partial differential equations</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2014-09</date><risdate>2014</risdate><volume>30</volume><issue>5</issue><spage>1427</spage><epage>1454</epage><pages>1427-1454</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>Ideally, domain decomposition methods (DDMs) seek what we call the DDM‐paradigm: “constructing the ‘global' solution by solving ‘local' problems, exclusively”. To achieve it, it is essential to disconnect the subdomain problems. This explains in part the success of nonoverlapping DDMs. However, in this kind of methods, different subdomains are linked by interface nodes that are shared by several subdomains. Discretization procedures for partial differential equations of a new kind, in which each node belongs to one and only one coarse‐mesh subdomain, are here introduced and analyzed. A discretization method of this type was very successfully used to develop the derived vector‐space‐framework. Using it, it is possible to develop algorithms that satisfy the DDM‐paradigm. Other enhanced numerical and computational properties of them are also discussed. © 2014 The Authors. Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. 30: 1427–1454, 2014</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/num.21852</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2014-09, Vol.30 (5), p.1427-1454
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_miscellaneous_1559657006
source Wiley Online Library All Journals
subjects 100%-parallel algorithms
Algorithms
Coarsening
Construction
DDM with constraints
Discretization
Domain decomposition methods
Mathematical models
nonoverlapping DDM
Numerical analysis
parallel-computation
Partial differential equations
PDE-solution-methods
title Nonoverlapping discretization methods for partial differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonoverlapping%20discretization%20methods%20for%20partial%20differential%20equations&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Herrera,%20Ismael&rft.date=2014-09&rft.volume=30&rft.issue=5&rft.spage=1427&rft.epage=1454&rft.pages=1427-1454&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.21852&rft_dat=%3Cproquest_cross%3E1559657006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548415466&rft_id=info:pmid/&rfr_iscdi=true