Photon-field-shape effects on Rabi splitting energies in ZnO microcavities

•We fabricate ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors.•The photon-field shape in the cavity is tuned to node or anti-node type.•The cavity-polariton dispersions are confirmed by angle-resolved reflectance.•The Rabi splitting energies are analyzed from the cavity-polariton dispe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials 2014-08, Vol.36 (10), p.1622-1626
Hauptverfasser: Kawakami, Masaki, Kawase, Toshiki, Kim, DaeGwi, Nakayama, Masaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1626
container_issue 10
container_start_page 1622
container_title Optical materials
container_volume 36
creator Kawakami, Masaki
Kawase, Toshiki
Kim, DaeGwi
Nakayama, Masaaki
description •We fabricate ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors.•The photon-field shape in the cavity is tuned to node or anti-node type.•The cavity-polariton dispersions are confirmed by angle-resolved reflectance.•The Rabi splitting energies are analyzed from the cavity-polariton dispersion.•The Rabi splitting energies are controlled by the photon-field shape. We have investigated the photon-field-shape effect on the Rabi splitting energies in ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors (DBRs). The thickness of the ZnO active layer was fixed to λ/2 corresponding to a half of an effective resonant wavelength of the lowest-lying exciton. The photon-field shape was tuned to a node type or an antinode type by changing the order of the refractive indices in the DBRs. We obtained the cavity-polariton dispersions from angle-resolved reflectance spectra measured at 10K. The Rabi splitting energies were evaluated from the analysis of the cavity-polariton dispersions with a phenomenological Hamiltonian for the strong coupling between the three kinds of excitons peculiar to ZnO labeled A, B, and C and the cavity photon. It was found that the Rabi splitting energies in the antinode-type microcavity are almost a half of those in the node-type microcavity. We semi-quantitatively analyzed the photon-field-shape effect, taking account of the overlap between the exciton and photon-field envelope functions.
doi_str_mv 10.1016/j.optmat.2013.11.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559654583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925346713006289</els_id><sourcerecordid>1559654583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b2c43edb58a96af5f2749309550b031c2253a4fa9cfd21cfcfa966dd54706f0a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMNeBC-75mOT3b0IIn5SqIhevIQ0O2lTttk1SQv-e1O2ePQ0w_C-8848CF0SXBBMxM266Ie4UbGgmLCCkALT5ghNSF2xnFBOj9EEN5TnrBTVKToLYY0xplyICXp9W_Wxd7mx0LV5WKkBMjAGdAxZ77J3tbBZGDobo3XLDBz4pYWQWZd9uXm2sdr3Wu1sTMNzdGJUF-DiUKfo8_Hh4_45n82fXu7vZrlmdR3zBdUlg3bBa9UIZbihVdkw3HCOF5gRTSlnqjSq0aalRBudWiHalpcVFgYrNkXX497B999bCFFubNDQdcpBvw2ScN4IXvKaJWk5StOZIXgwcvB2o_yPJFju0cm1HNHJPTpJiEzoku3qkKCCVp3xymkb_ry05ow3TCTd7aiD9O7OgpdBW3AaWusTQdn29v-gX7sihsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559654583</pqid></control><display><type>article</type><title>Photon-field-shape effects on Rabi splitting energies in ZnO microcavities</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kawakami, Masaki ; Kawase, Toshiki ; Kim, DaeGwi ; Nakayama, Masaaki</creator><creatorcontrib>Kawakami, Masaki ; Kawase, Toshiki ; Kim, DaeGwi ; Nakayama, Masaaki</creatorcontrib><description>•We fabricate ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors.•The photon-field shape in the cavity is tuned to node or anti-node type.•The cavity-polariton dispersions are confirmed by angle-resolved reflectance.•The Rabi splitting energies are analyzed from the cavity-polariton dispersion.•The Rabi splitting energies are controlled by the photon-field shape. We have investigated the photon-field-shape effect on the Rabi splitting energies in ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors (DBRs). The thickness of the ZnO active layer was fixed to λ/2 corresponding to a half of an effective resonant wavelength of the lowest-lying exciton. The photon-field shape was tuned to a node type or an antinode type by changing the order of the refractive indices in the DBRs. We obtained the cavity-polariton dispersions from angle-resolved reflectance spectra measured at 10K. The Rabi splitting energies were evaluated from the analysis of the cavity-polariton dispersions with a phenomenological Hamiltonian for the strong coupling between the three kinds of excitons peculiar to ZnO labeled A, B, and C and the cavity photon. It was found that the Rabi splitting energies in the antinode-type microcavity are almost a half of those in the node-type microcavity. We semi-quantitatively analyzed the photon-field-shape effect, taking account of the overlap between the exciton and photon-field envelope functions.</description><identifier>ISSN: 0925-3467</identifier><identifier>EISSN: 1873-1252</identifier><identifier>DOI: 10.1016/j.optmat.2013.11.029</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Angle-resolved reflectance ; Cavity polariton ; Dispersions ; Exact sciences and technology ; Excitation ; Excitation spectra ; Fundamental areas of phenomenology (including applications) ; Hafnium oxide ; Microcavities ; Microcavity ; Optical materials ; Optics ; Photon-field-shape effect ; Photons ; Physics ; Rabi splitting energy ; Splitting ; Zinc oxide ; ZnO</subject><ispartof>Optical materials, 2014-08, Vol.36 (10), p.1622-1626</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-b2c43edb58a96af5f2749309550b031c2253a4fa9cfd21cfcfa966dd54706f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optmat.2013.11.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28535936$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawakami, Masaki</creatorcontrib><creatorcontrib>Kawase, Toshiki</creatorcontrib><creatorcontrib>Kim, DaeGwi</creatorcontrib><creatorcontrib>Nakayama, Masaaki</creatorcontrib><title>Photon-field-shape effects on Rabi splitting energies in ZnO microcavities</title><title>Optical materials</title><description>•We fabricate ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors.•The photon-field shape in the cavity is tuned to node or anti-node type.•The cavity-polariton dispersions are confirmed by angle-resolved reflectance.•The Rabi splitting energies are analyzed from the cavity-polariton dispersion.•The Rabi splitting energies are controlled by the photon-field shape. We have investigated the photon-field-shape effect on the Rabi splitting energies in ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors (DBRs). The thickness of the ZnO active layer was fixed to λ/2 corresponding to a half of an effective resonant wavelength of the lowest-lying exciton. The photon-field shape was tuned to a node type or an antinode type by changing the order of the refractive indices in the DBRs. We obtained the cavity-polariton dispersions from angle-resolved reflectance spectra measured at 10K. The Rabi splitting energies were evaluated from the analysis of the cavity-polariton dispersions with a phenomenological Hamiltonian for the strong coupling between the three kinds of excitons peculiar to ZnO labeled A, B, and C and the cavity photon. It was found that the Rabi splitting energies in the antinode-type microcavity are almost a half of those in the node-type microcavity. We semi-quantitatively analyzed the photon-field-shape effect, taking account of the overlap between the exciton and photon-field envelope functions.</description><subject>Angle-resolved reflectance</subject><subject>Cavity polariton</subject><subject>Dispersions</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Excitation spectra</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hafnium oxide</subject><subject>Microcavities</subject><subject>Microcavity</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photon-field-shape effect</subject><subject>Photons</subject><subject>Physics</subject><subject>Rabi splitting energy</subject><subject>Splitting</subject><subject>Zinc oxide</subject><subject>ZnO</subject><issn>0925-3467</issn><issn>1873-1252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMNeBC-75mOT3b0IIn5SqIhevIQ0O2lTttk1SQv-e1O2ePQ0w_C-8848CF0SXBBMxM266Ie4UbGgmLCCkALT5ghNSF2xnFBOj9EEN5TnrBTVKToLYY0xplyICXp9W_Wxd7mx0LV5WKkBMjAGdAxZ77J3tbBZGDobo3XLDBz4pYWQWZd9uXm2sdr3Wu1sTMNzdGJUF-DiUKfo8_Hh4_45n82fXu7vZrlmdR3zBdUlg3bBa9UIZbihVdkw3HCOF5gRTSlnqjSq0aalRBudWiHalpcVFgYrNkXX497B999bCFFubNDQdcpBvw2ScN4IXvKaJWk5StOZIXgwcvB2o_yPJFju0cm1HNHJPTpJiEzoku3qkKCCVp3xymkb_ry05ow3TCTd7aiD9O7OgpdBW3AaWusTQdn29v-gX7sihsc</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kawakami, Masaki</creator><creator>Kawase, Toshiki</creator><creator>Kim, DaeGwi</creator><creator>Nakayama, Masaaki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Photon-field-shape effects on Rabi splitting energies in ZnO microcavities</title><author>Kawakami, Masaki ; Kawase, Toshiki ; Kim, DaeGwi ; Nakayama, Masaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b2c43edb58a96af5f2749309550b031c2253a4fa9cfd21cfcfa966dd54706f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angle-resolved reflectance</topic><topic>Cavity polariton</topic><topic>Dispersions</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Excitation spectra</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hafnium oxide</topic><topic>Microcavities</topic><topic>Microcavity</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photon-field-shape effect</topic><topic>Photons</topic><topic>Physics</topic><topic>Rabi splitting energy</topic><topic>Splitting</topic><topic>Zinc oxide</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawakami, Masaki</creatorcontrib><creatorcontrib>Kawase, Toshiki</creatorcontrib><creatorcontrib>Kim, DaeGwi</creatorcontrib><creatorcontrib>Nakayama, Masaaki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawakami, Masaki</au><au>Kawase, Toshiki</au><au>Kim, DaeGwi</au><au>Nakayama, Masaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photon-field-shape effects on Rabi splitting energies in ZnO microcavities</atitle><jtitle>Optical materials</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>36</volume><issue>10</issue><spage>1622</spage><epage>1626</epage><pages>1622-1626</pages><issn>0925-3467</issn><eissn>1873-1252</eissn><abstract>•We fabricate ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors.•The photon-field shape in the cavity is tuned to node or anti-node type.•The cavity-polariton dispersions are confirmed by angle-resolved reflectance.•The Rabi splitting energies are analyzed from the cavity-polariton dispersion.•The Rabi splitting energies are controlled by the photon-field shape. We have investigated the photon-field-shape effect on the Rabi splitting energies in ZnO microcavities with HfO2/SiO2 distributed Bragg reflectors (DBRs). The thickness of the ZnO active layer was fixed to λ/2 corresponding to a half of an effective resonant wavelength of the lowest-lying exciton. The photon-field shape was tuned to a node type or an antinode type by changing the order of the refractive indices in the DBRs. We obtained the cavity-polariton dispersions from angle-resolved reflectance spectra measured at 10K. The Rabi splitting energies were evaluated from the analysis of the cavity-polariton dispersions with a phenomenological Hamiltonian for the strong coupling between the three kinds of excitons peculiar to ZnO labeled A, B, and C and the cavity photon. It was found that the Rabi splitting energies in the antinode-type microcavity are almost a half of those in the node-type microcavity. We semi-quantitatively analyzed the photon-field-shape effect, taking account of the overlap between the exciton and photon-field envelope functions.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.optmat.2013.11.029</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-3467
ispartof Optical materials, 2014-08, Vol.36 (10), p.1622-1626
issn 0925-3467
1873-1252
language eng
recordid cdi_proquest_miscellaneous_1559654583
source Elsevier ScienceDirect Journals Complete
subjects Angle-resolved reflectance
Cavity polariton
Dispersions
Exact sciences and technology
Excitation
Excitation spectra
Fundamental areas of phenomenology (including applications)
Hafnium oxide
Microcavities
Microcavity
Optical materials
Optics
Photon-field-shape effect
Photons
Physics
Rabi splitting energy
Splitting
Zinc oxide
ZnO
title Photon-field-shape effects on Rabi splitting energies in ZnO microcavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photon-field-shape%20effects%20on%20Rabi%20splitting%20energies%20in%20ZnO%20microcavities&rft.jtitle=Optical%20materials&rft.au=Kawakami,%20Masaki&rft.date=2014-08-01&rft.volume=36&rft.issue=10&rft.spage=1622&rft.epage=1626&rft.pages=1622-1626&rft.issn=0925-3467&rft.eissn=1873-1252&rft_id=info:doi/10.1016/j.optmat.2013.11.029&rft_dat=%3Cproquest_cross%3E1559654583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559654583&rft_id=info:pmid/&rft_els_id=S0925346713006289&rfr_iscdi=true