Approximate dual Gabor atoms via the adjoint lattice method
Regular Gabor frames for L 2 ( ℝ d ) are obtained by applying time-frequency shifts from a lattice in Λ ◃ ℝ d × ℝ ̂ to some decent so-called Gabor atom g , which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some g ∈ S 0 ( ℝ d ) . T...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2014-06, Vol.40 (3), p.651-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 665 |
---|---|
container_issue | 3 |
container_start_page | 651 |
container_title | Advances in computational mathematics |
container_volume | 40 |
creator | Feichtinger, Hans G. Grybos, Anna Onchis, Darian M. |
description | Regular Gabor frames for
L
2
(
ℝ
d
)
are obtained by applying time-frequency shifts from a lattice in
Λ
◃
ℝ
d
×
ℝ
̂
to some decent so-called Gabor atom
g
, which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some
g
∈
S
0
(
ℝ
d
)
. There is always a canonical dual frame, generated by the dual Gabor atom
g
~
. The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from
a
ℤ
d
×
b
ℤ
d
). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice
Λ
°
. The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples. |
doi_str_mv | 10.1007/s10444-013-9324-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559651817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559651817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9g8shjubCeOxVRVUJAqscBsOYlDUyVxsV0E_x6jMDPd6fTe072PkGuEWwRQdxFBSskABdOCS4YnZIGF4kzn-2neATVTWFbn5CLGPQDoUhULcr86HIL_6kebHG2PdqAbW_tAbfJjpJ-9pWnnqG33vp8SHWxKfePo6NLOt5fkrLNDdFd_c0neHh9e109s-7J5Xq-2rBEaE-tQ1xUvCt1K0Ng2roRaFI5XjkvRlUpAUznbVFraElApwWvecLCgZFcV3IoluZlz86cfRxeTGfvYuGGwk_PHaDBnlwVWqLIUZ2kTfIzBdeYQcrfwbRDMLygzgzIZlPkFZTB7-OyJWTu9u2D2_him3Ogf0w_TTWmR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559651817</pqid></control><display><type>article</type><title>Approximate dual Gabor atoms via the adjoint lattice method</title><source>Springer Nature - Complete Springer Journals</source><creator>Feichtinger, Hans G. ; Grybos, Anna ; Onchis, Darian M.</creator><creatorcontrib>Feichtinger, Hans G. ; Grybos, Anna ; Onchis, Darian M.</creatorcontrib><description>Regular Gabor frames for
L
2
(
ℝ
d
)
are obtained by applying time-frequency shifts from a lattice in
Λ
◃
ℝ
d
×
ℝ
̂
to some decent so-called Gabor atom
g
, which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some
g
∈
S
0
(
ℝ
d
)
. There is always a canonical dual frame, generated by the dual Gabor atom
g
~
. The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from
a
ℤ
d
×
b
ℤ
d
). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice
Λ
°
. The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-013-9324-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adjoints ; Approximation ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Foundations ; Frames ; Kernels ; Lattices ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Visualization</subject><ispartof>Advances in computational mathematics, 2014-06, Vol.40 (3), p.651-665</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</citedby><cites>FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-013-9324-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-013-9324-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Feichtinger, Hans G.</creatorcontrib><creatorcontrib>Grybos, Anna</creatorcontrib><creatorcontrib>Onchis, Darian M.</creatorcontrib><title>Approximate dual Gabor atoms via the adjoint lattice method</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>Regular Gabor frames for
L
2
(
ℝ
d
)
are obtained by applying time-frequency shifts from a lattice in
Λ
◃
ℝ
d
×
ℝ
̂
to some decent so-called Gabor atom
g
, which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some
g
∈
S
0
(
ℝ
d
)
. There is always a canonical dual frame, generated by the dual Gabor atom
g
~
. The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from
a
ℤ
d
×
b
ℤ
d
). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice
Λ
°
. The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.</description><subject>Adjoints</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Foundations</subject><subject>Frames</subject><subject>Kernels</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9g8shjubCeOxVRVUJAqscBsOYlDUyVxsV0E_x6jMDPd6fTe072PkGuEWwRQdxFBSskABdOCS4YnZIGF4kzn-2neATVTWFbn5CLGPQDoUhULcr86HIL_6kebHG2PdqAbW_tAbfJjpJ-9pWnnqG33vp8SHWxKfePo6NLOt5fkrLNDdFd_c0neHh9e109s-7J5Xq-2rBEaE-tQ1xUvCt1K0Ng2roRaFI5XjkvRlUpAUznbVFraElApwWvecLCgZFcV3IoluZlz86cfRxeTGfvYuGGwk_PHaDBnlwVWqLIUZ2kTfIzBdeYQcrfwbRDMLygzgzIZlPkFZTB7-OyJWTu9u2D2_him3Ogf0w_TTWmR</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Feichtinger, Hans G.</creator><creator>Grybos, Anna</creator><creator>Onchis, Darian M.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Approximate dual Gabor atoms via the adjoint lattice method</title><author>Feichtinger, Hans G. ; Grybos, Anna ; Onchis, Darian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adjoints</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Foundations</topic><topic>Frames</topic><topic>Kernels</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feichtinger, Hans G.</creatorcontrib><creatorcontrib>Grybos, Anna</creatorcontrib><creatorcontrib>Onchis, Darian M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feichtinger, Hans G.</au><au>Grybos, Anna</au><au>Onchis, Darian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate dual Gabor atoms via the adjoint lattice method</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>40</volume><issue>3</issue><spage>651</spage><epage>665</epage><pages>651-665</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>Regular Gabor frames for
L
2
(
ℝ
d
)
are obtained by applying time-frequency shifts from a lattice in
Λ
◃
ℝ
d
×
ℝ
̂
to some decent so-called Gabor atom
g
, which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some
g
∈
S
0
(
ℝ
d
)
. There is always a canonical dual frame, generated by the dual Gabor atom
g
~
. The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from
a
ℤ
d
×
b
ℤ
d
). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice
Λ
°
. The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-013-9324-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2014-06, Vol.40 (3), p.651-665 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559651817 |
source | Springer Nature - Complete Springer Journals |
subjects | Adjoints Approximation Computational Mathematics and Numerical Analysis Computational Science and Engineering Foundations Frames Kernels Lattices Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Visualization |
title | Approximate dual Gabor atoms via the adjoint lattice method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20dual%20Gabor%20atoms%20via%20the%20adjoint%20lattice%20method&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Feichtinger,%20Hans%20G.&rft.date=2014-06-01&rft.volume=40&rft.issue=3&rft.spage=651&rft.epage=665&rft.pages=651-665&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-013-9324-1&rft_dat=%3Cproquest_cross%3E1559651817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559651817&rft_id=info:pmid/&rfr_iscdi=true |