Approximate dual Gabor atoms via the adjoint lattice method

Regular Gabor frames for L 2 ( ℝ d ) are obtained by applying time-frequency shifts from a lattice in Λ ◃ ℝ d × ℝ ̂ to some decent so-called Gabor atom g , which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some g ∈ S 0 ( ℝ d ) . T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2014-06, Vol.40 (3), p.651-665
Hauptverfasser: Feichtinger, Hans G., Grybos, Anna, Onchis, Darian M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue 3
container_start_page 651
container_title Advances in computational mathematics
container_volume 40
creator Feichtinger, Hans G.
Grybos, Anna
Onchis, Darian M.
description Regular Gabor frames for L 2 ( ℝ d ) are obtained by applying time-frequency shifts from a lattice in Λ ◃ ℝ d × ℝ ̂ to some decent so-called Gabor atom g , which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some g ∈ S 0 ( ℝ d ) . There is always a canonical dual frame, generated by the dual Gabor atom g ~ . The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from a ℤ d × b ℤ d ). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice Λ ° . The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.
doi_str_mv 10.1007/s10444-013-9324-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559651817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559651817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9g8shjubCeOxVRVUJAqscBsOYlDUyVxsV0E_x6jMDPd6fTe072PkGuEWwRQdxFBSskABdOCS4YnZIGF4kzn-2neATVTWFbn5CLGPQDoUhULcr86HIL_6kebHG2PdqAbW_tAbfJjpJ-9pWnnqG33vp8SHWxKfePo6NLOt5fkrLNDdFd_c0neHh9e109s-7J5Xq-2rBEaE-tQ1xUvCt1K0Ng2roRaFI5XjkvRlUpAUznbVFraElApwWvecLCgZFcV3IoluZlz86cfRxeTGfvYuGGwk_PHaDBnlwVWqLIUZ2kTfIzBdeYQcrfwbRDMLygzgzIZlPkFZTB7-OyJWTu9u2D2_him3Ogf0w_TTWmR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559651817</pqid></control><display><type>article</type><title>Approximate dual Gabor atoms via the adjoint lattice method</title><source>Springer Nature - Complete Springer Journals</source><creator>Feichtinger, Hans G. ; Grybos, Anna ; Onchis, Darian M.</creator><creatorcontrib>Feichtinger, Hans G. ; Grybos, Anna ; Onchis, Darian M.</creatorcontrib><description>Regular Gabor frames for L 2 ( ℝ d ) are obtained by applying time-frequency shifts from a lattice in Λ ◃ ℝ d × ℝ ̂ to some decent so-called Gabor atom g , which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some g ∈ S 0 ( ℝ d ) . There is always a canonical dual frame, generated by the dual Gabor atom g ~ . The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from a ℤ d × b ℤ d ). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice Λ ° . The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-013-9324-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adjoints ; Approximation ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Foundations ; Frames ; Kernels ; Lattices ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Visualization</subject><ispartof>Advances in computational mathematics, 2014-06, Vol.40 (3), p.651-665</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</citedby><cites>FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-013-9324-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-013-9324-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Feichtinger, Hans G.</creatorcontrib><creatorcontrib>Grybos, Anna</creatorcontrib><creatorcontrib>Onchis, Darian M.</creatorcontrib><title>Approximate dual Gabor atoms via the adjoint lattice method</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>Regular Gabor frames for L 2 ( ℝ d ) are obtained by applying time-frequency shifts from a lattice in Λ ◃ ℝ d × ℝ ̂ to some decent so-called Gabor atom g , which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some g ∈ S 0 ( ℝ d ) . There is always a canonical dual frame, generated by the dual Gabor atom g ~ . The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from a ℤ d × b ℤ d ). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice Λ ° . The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.</description><subject>Adjoints</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Foundations</subject><subject>Frames</subject><subject>Kernels</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9g8shjubCeOxVRVUJAqscBsOYlDUyVxsV0E_x6jMDPd6fTe072PkGuEWwRQdxFBSskABdOCS4YnZIGF4kzn-2neATVTWFbn5CLGPQDoUhULcr86HIL_6kebHG2PdqAbW_tAbfJjpJ-9pWnnqG33vp8SHWxKfePo6NLOt5fkrLNDdFd_c0neHh9e109s-7J5Xq-2rBEaE-tQ1xUvCt1K0Ng2roRaFI5XjkvRlUpAUznbVFraElApwWvecLCgZFcV3IoluZlz86cfRxeTGfvYuGGwk_PHaDBnlwVWqLIUZ2kTfIzBdeYQcrfwbRDMLygzgzIZlPkFZTB7-OyJWTu9u2D2_him3Ogf0w_TTWmR</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Feichtinger, Hans G.</creator><creator>Grybos, Anna</creator><creator>Onchis, Darian M.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Approximate dual Gabor atoms via the adjoint lattice method</title><author>Feichtinger, Hans G. ; Grybos, Anna ; Onchis, Darian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f19b82559d4091dce60b35e28e243f6730c8eac894a6017732b2c20a074f852a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adjoints</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Foundations</topic><topic>Frames</topic><topic>Kernels</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feichtinger, Hans G.</creatorcontrib><creatorcontrib>Grybos, Anna</creatorcontrib><creatorcontrib>Onchis, Darian M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feichtinger, Hans G.</au><au>Grybos, Anna</au><au>Onchis, Darian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate dual Gabor atoms via the adjoint lattice method</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>40</volume><issue>3</issue><spage>651</spage><epage>665</epage><pages>651-665</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>Regular Gabor frames for L 2 ( ℝ d ) are obtained by applying time-frequency shifts from a lattice in Λ ◃ ℝ d × ℝ ̂ to some decent so-called Gabor atom g , which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some g ∈ S 0 ( ℝ d ) . There is always a canonical dual frame, generated by the dual Gabor atom g ~ . The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from a ℤ d × b ℤ d ). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice Λ ° . The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-013-9324-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2014-06, Vol.40 (3), p.651-665
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_miscellaneous_1559651817
source Springer Nature - Complete Springer Journals
subjects Adjoints
Approximation
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Foundations
Frames
Kernels
Lattices
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Visualization
title Approximate dual Gabor atoms via the adjoint lattice method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20dual%20Gabor%20atoms%20via%20the%20adjoint%20lattice%20method&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Feichtinger,%20Hans%20G.&rft.date=2014-06-01&rft.volume=40&rft.issue=3&rft.spage=651&rft.epage=665&rft.pages=651-665&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-013-9324-1&rft_dat=%3Cproquest_cross%3E1559651817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559651817&rft_id=info:pmid/&rfr_iscdi=true