Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle
Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultiv...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-09, Vol.5 (1), p.4797-4797, Article 4797 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4797 |
---|---|
container_issue | 1 |
container_start_page | 4797 |
container_title | Nature communications |
container_volume | 5 |
creator | Chen, A.P. Berounsky, V.M. Chan, M.K. Blackford, M.G. Cady, C. Moskowitz, B.M. Kraal, P. Lima, E.A. Kopp, R.E. Lumpkin, G.R. Weiss, B.P. Hesse, P. Vella, N.G.F. |
description | Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.
Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen
et al.
show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records. |
doi_str_mv | 10.1038/ncomms5797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559617196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3418657631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</originalsourceid><addsrcrecordid>eNpl0c1O3DAQAGALtWIR5cIDIEtcKqqlnjiJk2OF6I-0iEs5RxN7Al4l9mI7SLx9vSzQVevLWJrP4xmbsVMQlyBk89VpP02xUq06YEeFKGEJqpAf9vYLdhLjWuQlW2jK8pAtigpU1Uo4YukG7x0lq_km-A2FZClyP_DZ6XlM9gkTGT69GJ9Qb2GfAwWLHJ3h6YFs4Nq7FGw_J-sdT54jjylgsoPNpymmGcMztyEn9bMe6RP7OOAY6eQ1HrO779e_r34uV7c_fl19Wy21bFRaNoaglsIYGArTNgOViFqJhlAgQA-YWSUGqUAIgrI3UtdoBPZKqV7XrTxmn3d182yPc-6jm2zUNI7oyM-xg6pqa1DQ1pme_0PXfg4ud7dVTSWLqpRZXeyUDj7GQEO3CXbKw3Uguu13dH-_I-Oz15JzP5F5p2-Pn8GXHYg55e4p7N35f7k_8MeXpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558532543</pqid></control><display><type>article</type><title>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</title><source>Springer Nature OA Free Journals</source><creator>Chen, A.P. ; Berounsky, V.M. ; Chan, M.K. ; Blackford, M.G. ; Cady, C. ; Moskowitz, B.M. ; Kraal, P. ; Lima, E.A. ; Kopp, R.E. ; Lumpkin, G.R. ; Weiss, B.P. ; Hesse, P. ; Vella, N.G.F.</creator><creatorcontrib>Chen, A.P. ; Berounsky, V.M. ; Chan, M.K. ; Blackford, M.G. ; Cady, C. ; Moskowitz, B.M. ; Kraal, P. ; Lima, E.A. ; Kopp, R.E. ; Lumpkin, G.R. ; Weiss, B.P. ; Hesse, P. ; Vella, N.G.F.</creatorcontrib><description>Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.
Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen
et al.
show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5797</identifier><identifier>PMID: 25175931</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 631/326/171 ; 704/158/47 ; Alphaproteobacteria - chemistry ; Alphaproteobacteria - metabolism ; Alphaproteobacteria - ultrastructure ; Aquatic Organisms ; Black Sea ; Estuaries ; Ferrosoferric Oxide - chemistry ; Humanities and Social Sciences ; Iron - chemistry ; Iron - metabolism ; Magnetic Resonance Spectroscopy ; Magnetosomes - chemistry ; Magnetosomes - metabolism ; Magnetosomes - ultrastructure ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sulfides - chemistry</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4797-4797, Article 4797</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</citedby><cites>FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5797$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5797$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5797$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25175931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, A.P.</creatorcontrib><creatorcontrib>Berounsky, V.M.</creatorcontrib><creatorcontrib>Chan, M.K.</creatorcontrib><creatorcontrib>Blackford, M.G.</creatorcontrib><creatorcontrib>Cady, C.</creatorcontrib><creatorcontrib>Moskowitz, B.M.</creatorcontrib><creatorcontrib>Kraal, P.</creatorcontrib><creatorcontrib>Lima, E.A.</creatorcontrib><creatorcontrib>Kopp, R.E.</creatorcontrib><creatorcontrib>Lumpkin, G.R.</creatorcontrib><creatorcontrib>Weiss, B.P.</creatorcontrib><creatorcontrib>Hesse, P.</creatorcontrib><creatorcontrib>Vella, N.G.F.</creatorcontrib><title>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.
Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen
et al.
show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.</description><subject>14/63</subject><subject>631/326/171</subject><subject>704/158/47</subject><subject>Alphaproteobacteria - chemistry</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Alphaproteobacteria - ultrastructure</subject><subject>Aquatic Organisms</subject><subject>Black Sea</subject><subject>Estuaries</subject><subject>Ferrosoferric Oxide - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetosomes - chemistry</subject><subject>Magnetosomes - metabolism</subject><subject>Magnetosomes - ultrastructure</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sulfides - chemistry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0c1O3DAQAGALtWIR5cIDIEtcKqqlnjiJk2OF6I-0iEs5RxN7Al4l9mI7SLx9vSzQVevLWJrP4xmbsVMQlyBk89VpP02xUq06YEeFKGEJqpAf9vYLdhLjWuQlW2jK8pAtigpU1Uo4YukG7x0lq_km-A2FZClyP_DZ6XlM9gkTGT69GJ9Qb2GfAwWLHJ3h6YFs4Nq7FGw_J-sdT54jjylgsoPNpymmGcMztyEn9bMe6RP7OOAY6eQ1HrO779e_r34uV7c_fl19Wy21bFRaNoaglsIYGArTNgOViFqJhlAgQA-YWSUGqUAIgrI3UtdoBPZKqV7XrTxmn3d182yPc-6jm2zUNI7oyM-xg6pqa1DQ1pme_0PXfg4ud7dVTSWLqpRZXeyUDj7GQEO3CXbKw3Uguu13dH-_I-Oz15JzP5F5p2-Pn8GXHYg55e4p7N35f7k_8MeXpg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Chen, A.P.</creator><creator>Berounsky, V.M.</creator><creator>Chan, M.K.</creator><creator>Blackford, M.G.</creator><creator>Cady, C.</creator><creator>Moskowitz, B.M.</creator><creator>Kraal, P.</creator><creator>Lima, E.A.</creator><creator>Kopp, R.E.</creator><creator>Lumpkin, G.R.</creator><creator>Weiss, B.P.</creator><creator>Hesse, P.</creator><creator>Vella, N.G.F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</title><author>Chen, A.P. ; Berounsky, V.M. ; Chan, M.K. ; Blackford, M.G. ; Cady, C. ; Moskowitz, B.M. ; Kraal, P. ; Lima, E.A. ; Kopp, R.E. ; Lumpkin, G.R. ; Weiss, B.P. ; Hesse, P. ; Vella, N.G.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14/63</topic><topic>631/326/171</topic><topic>704/158/47</topic><topic>Alphaproteobacteria - chemistry</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Alphaproteobacteria - ultrastructure</topic><topic>Aquatic Organisms</topic><topic>Black Sea</topic><topic>Estuaries</topic><topic>Ferrosoferric Oxide - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetosomes - chemistry</topic><topic>Magnetosomes - metabolism</topic><topic>Magnetosomes - ultrastructure</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sulfides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, A.P.</creatorcontrib><creatorcontrib>Berounsky, V.M.</creatorcontrib><creatorcontrib>Chan, M.K.</creatorcontrib><creatorcontrib>Blackford, M.G.</creatorcontrib><creatorcontrib>Cady, C.</creatorcontrib><creatorcontrib>Moskowitz, B.M.</creatorcontrib><creatorcontrib>Kraal, P.</creatorcontrib><creatorcontrib>Lima, E.A.</creatorcontrib><creatorcontrib>Kopp, R.E.</creatorcontrib><creatorcontrib>Lumpkin, G.R.</creatorcontrib><creatorcontrib>Weiss, B.P.</creatorcontrib><creatorcontrib>Hesse, P.</creatorcontrib><creatorcontrib>Vella, N.G.F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, A.P.</au><au>Berounsky, V.M.</au><au>Chan, M.K.</au><au>Blackford, M.G.</au><au>Cady, C.</au><au>Moskowitz, B.M.</au><au>Kraal, P.</au><au>Lima, E.A.</au><au>Kopp, R.E.</au><au>Lumpkin, G.R.</au><au>Weiss, B.P.</au><au>Hesse, P.</au><au>Vella, N.G.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4797</spage><epage>4797</epage><pages>4797-4797</pages><artnum>4797</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle.
Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen
et al.
show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25175931</pmid><doi>10.1038/ncomms5797</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-09, Vol.5 (1), p.4797-4797, Article 4797 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559617196 |
source | Springer Nature OA Free Journals |
subjects | 14/63 631/326/171 704/158/47 Alphaproteobacteria - chemistry Alphaproteobacteria - metabolism Alphaproteobacteria - ultrastructure Aquatic Organisms Black Sea Estuaries Ferrosoferric Oxide - chemistry Humanities and Social Sciences Iron - chemistry Iron - metabolism Magnetic Resonance Spectroscopy Magnetosomes - chemistry Magnetosomes - metabolism Magnetosomes - ultrastructure multidisciplinary Science Science (multidisciplinary) Sulfides - chemistry |
title | Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20uncultivated%20magnetotactic%20bacteria%20and%20their%20contribution%20to%20a%20stratified%20estuary%20iron%20cycle&rft.jtitle=Nature%20communications&rft.au=Chen,%20A.P.&rft.date=2014-09-01&rft.volume=5&rft.issue=1&rft.spage=4797&rft.epage=4797&rft.pages=4797-4797&rft.artnum=4797&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5797&rft_dat=%3Cproquest_C6C%3E3418657631%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558532543&rft_id=info:pmid/25175931&rfr_iscdi=true |