Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle

Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-09, Vol.5 (1), p.4797-4797, Article 4797
Hauptverfasser: Chen, A.P., Berounsky, V.M., Chan, M.K., Blackford, M.G., Cady, C., Moskowitz, B.M., Kraal, P., Lima, E.A., Kopp, R.E., Lumpkin, G.R., Weiss, B.P., Hesse, P., Vella, N.G.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4797
container_issue 1
container_start_page 4797
container_title Nature communications
container_volume 5
creator Chen, A.P.
Berounsky, V.M.
Chan, M.K.
Blackford, M.G.
Cady, C.
Moskowitz, B.M.
Kraal, P.
Lima, E.A.
Kopp, R.E.
Lumpkin, G.R.
Weiss, B.P.
Hesse, P.
Vella, N.G.F.
description Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen et al. show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.
doi_str_mv 10.1038/ncomms5797
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559617196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3418657631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</originalsourceid><addsrcrecordid>eNpl0c1O3DAQAGALtWIR5cIDIEtcKqqlnjiJk2OF6I-0iEs5RxN7Al4l9mI7SLx9vSzQVevLWJrP4xmbsVMQlyBk89VpP02xUq06YEeFKGEJqpAf9vYLdhLjWuQlW2jK8pAtigpU1Uo4YukG7x0lq_km-A2FZClyP_DZ6XlM9gkTGT69GJ9Qb2GfAwWLHJ3h6YFs4Nq7FGw_J-sdT54jjylgsoPNpymmGcMztyEn9bMe6RP7OOAY6eQ1HrO779e_r34uV7c_fl19Wy21bFRaNoaglsIYGArTNgOViFqJhlAgQA-YWSUGqUAIgrI3UtdoBPZKqV7XrTxmn3d182yPc-6jm2zUNI7oyM-xg6pqa1DQ1pme_0PXfg4ud7dVTSWLqpRZXeyUDj7GQEO3CXbKw3Uguu13dH-_I-Oz15JzP5F5p2-Pn8GXHYg55e4p7N35f7k_8MeXpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558532543</pqid></control><display><type>article</type><title>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</title><source>Springer Nature OA Free Journals</source><creator>Chen, A.P. ; Berounsky, V.M. ; Chan, M.K. ; Blackford, M.G. ; Cady, C. ; Moskowitz, B.M. ; Kraal, P. ; Lima, E.A. ; Kopp, R.E. ; Lumpkin, G.R. ; Weiss, B.P. ; Hesse, P. ; Vella, N.G.F.</creator><creatorcontrib>Chen, A.P. ; Berounsky, V.M. ; Chan, M.K. ; Blackford, M.G. ; Cady, C. ; Moskowitz, B.M. ; Kraal, P. ; Lima, E.A. ; Kopp, R.E. ; Lumpkin, G.R. ; Weiss, B.P. ; Hesse, P. ; Vella, N.G.F.</creatorcontrib><description>Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen et al. show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5797</identifier><identifier>PMID: 25175931</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 631/326/171 ; 704/158/47 ; Alphaproteobacteria - chemistry ; Alphaproteobacteria - metabolism ; Alphaproteobacteria - ultrastructure ; Aquatic Organisms ; Black Sea ; Estuaries ; Ferrosoferric Oxide - chemistry ; Humanities and Social Sciences ; Iron - chemistry ; Iron - metabolism ; Magnetic Resonance Spectroscopy ; Magnetosomes - chemistry ; Magnetosomes - metabolism ; Magnetosomes - ultrastructure ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sulfides - chemistry</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4797-4797, Article 4797</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</citedby><cites>FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5797$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5797$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5797$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25175931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, A.P.</creatorcontrib><creatorcontrib>Berounsky, V.M.</creatorcontrib><creatorcontrib>Chan, M.K.</creatorcontrib><creatorcontrib>Blackford, M.G.</creatorcontrib><creatorcontrib>Cady, C.</creatorcontrib><creatorcontrib>Moskowitz, B.M.</creatorcontrib><creatorcontrib>Kraal, P.</creatorcontrib><creatorcontrib>Lima, E.A.</creatorcontrib><creatorcontrib>Kopp, R.E.</creatorcontrib><creatorcontrib>Lumpkin, G.R.</creatorcontrib><creatorcontrib>Weiss, B.P.</creatorcontrib><creatorcontrib>Hesse, P.</creatorcontrib><creatorcontrib>Vella, N.G.F.</creatorcontrib><title>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen et al. show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.</description><subject>14/63</subject><subject>631/326/171</subject><subject>704/158/47</subject><subject>Alphaproteobacteria - chemistry</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Alphaproteobacteria - ultrastructure</subject><subject>Aquatic Organisms</subject><subject>Black Sea</subject><subject>Estuaries</subject><subject>Ferrosoferric Oxide - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Magnetosomes - chemistry</subject><subject>Magnetosomes - metabolism</subject><subject>Magnetosomes - ultrastructure</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sulfides - chemistry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0c1O3DAQAGALtWIR5cIDIEtcKqqlnjiJk2OF6I-0iEs5RxN7Al4l9mI7SLx9vSzQVevLWJrP4xmbsVMQlyBk89VpP02xUq06YEeFKGEJqpAf9vYLdhLjWuQlW2jK8pAtigpU1Uo4YukG7x0lq_km-A2FZClyP_DZ6XlM9gkTGT69GJ9Qb2GfAwWLHJ3h6YFs4Nq7FGw_J-sdT54jjylgsoPNpymmGcMztyEn9bMe6RP7OOAY6eQ1HrO779e_r34uV7c_fl19Wy21bFRaNoaglsIYGArTNgOViFqJhlAgQA-YWSUGqUAIgrI3UtdoBPZKqV7XrTxmn3d182yPc-6jm2zUNI7oyM-xg6pqa1DQ1pme_0PXfg4ud7dVTSWLqpRZXeyUDj7GQEO3CXbKw3Uguu13dH-_I-Oz15JzP5F5p2-Pn8GXHYg55e4p7N35f7k_8MeXpg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Chen, A.P.</creator><creator>Berounsky, V.M.</creator><creator>Chan, M.K.</creator><creator>Blackford, M.G.</creator><creator>Cady, C.</creator><creator>Moskowitz, B.M.</creator><creator>Kraal, P.</creator><creator>Lima, E.A.</creator><creator>Kopp, R.E.</creator><creator>Lumpkin, G.R.</creator><creator>Weiss, B.P.</creator><creator>Hesse, P.</creator><creator>Vella, N.G.F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</title><author>Chen, A.P. ; Berounsky, V.M. ; Chan, M.K. ; Blackford, M.G. ; Cady, C. ; Moskowitz, B.M. ; Kraal, P. ; Lima, E.A. ; Kopp, R.E. ; Lumpkin, G.R. ; Weiss, B.P. ; Hesse, P. ; Vella, N.G.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-8de1630dd1f2d98fe4aac708ea0a11b1ac3850f37100e14bd3c6ad0ab777bc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14/63</topic><topic>631/326/171</topic><topic>704/158/47</topic><topic>Alphaproteobacteria - chemistry</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Alphaproteobacteria - ultrastructure</topic><topic>Aquatic Organisms</topic><topic>Black Sea</topic><topic>Estuaries</topic><topic>Ferrosoferric Oxide - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Magnetosomes - chemistry</topic><topic>Magnetosomes - metabolism</topic><topic>Magnetosomes - ultrastructure</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sulfides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, A.P.</creatorcontrib><creatorcontrib>Berounsky, V.M.</creatorcontrib><creatorcontrib>Chan, M.K.</creatorcontrib><creatorcontrib>Blackford, M.G.</creatorcontrib><creatorcontrib>Cady, C.</creatorcontrib><creatorcontrib>Moskowitz, B.M.</creatorcontrib><creatorcontrib>Kraal, P.</creatorcontrib><creatorcontrib>Lima, E.A.</creatorcontrib><creatorcontrib>Kopp, R.E.</creatorcontrib><creatorcontrib>Lumpkin, G.R.</creatorcontrib><creatorcontrib>Weiss, B.P.</creatorcontrib><creatorcontrib>Hesse, P.</creatorcontrib><creatorcontrib>Vella, N.G.F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, A.P.</au><au>Berounsky, V.M.</au><au>Chan, M.K.</au><au>Blackford, M.G.</au><au>Cady, C.</au><au>Moskowitz, B.M.</au><au>Kraal, P.</au><au>Lima, E.A.</au><au>Kopp, R.E.</au><au>Lumpkin, G.R.</au><au>Weiss, B.P.</au><au>Hesse, P.</au><au>Vella, N.G.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4797</spage><epage>4797</epage><pages>4797-4797</pages><artnum>4797</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. Magnetotactic bacteria synthesize magnetite or greigite magnetosomes that, when fossilized, can serve as biomarkers of past ocean redox shifts. Here, Chen et al. show that these magnetosome types have very similar coercivity distributions, with implications for the analysis of sedimentary magnetic records.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25175931</pmid><doi>10.1038/ncomms5797</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-09, Vol.5 (1), p.4797-4797, Article 4797
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1559617196
source Springer Nature OA Free Journals
subjects 14/63
631/326/171
704/158/47
Alphaproteobacteria - chemistry
Alphaproteobacteria - metabolism
Alphaproteobacteria - ultrastructure
Aquatic Organisms
Black Sea
Estuaries
Ferrosoferric Oxide - chemistry
Humanities and Social Sciences
Iron - chemistry
Iron - metabolism
Magnetic Resonance Spectroscopy
Magnetosomes - chemistry
Magnetosomes - metabolism
Magnetosomes - ultrastructure
multidisciplinary
Science
Science (multidisciplinary)
Sulfides - chemistry
title Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20uncultivated%20magnetotactic%20bacteria%20and%20their%20contribution%20to%20a%20stratified%20estuary%20iron%20cycle&rft.jtitle=Nature%20communications&rft.au=Chen,%20A.P.&rft.date=2014-09-01&rft.volume=5&rft.issue=1&rft.spage=4797&rft.epage=4797&rft.pages=4797-4797&rft.artnum=4797&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5797&rft_dat=%3Cproquest_C6C%3E3418657631%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558532543&rft_id=info:pmid/25175931&rfr_iscdi=true