A new user similarity model to improve the accuracy of collaborative filtering

•We first analyze the shortages of the existing similarity measures in collaborative filtering.•And second, we propose a new user similarity model to overcome these drawbacks.•We compare the new model with many other similarity measures on two real data sets.•Experiments show that the new model can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2014-01, Vol.56, p.156-166
Hauptverfasser: Liu, Haifeng, Hu, Zheng, Mian, Ahmad, Tian, Hui, Zhu, Xuzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue
container_start_page 156
container_title Knowledge-based systems
container_volume 56
creator Liu, Haifeng
Hu, Zheng
Mian, Ahmad
Tian, Hui
Zhu, Xuzhen
description •We first analyze the shortages of the existing similarity measures in collaborative filtering.•And second, we propose a new user similarity model to overcome these drawbacks.•We compare the new model with many other similarity measures on two real data sets.•Experiments show that the new model can reach better performance than many existing similarity measures. Collaborative filtering has become one of the most used approaches to provide personalized services for users. The key of this approach is to find similar users or items using user-item rating matrix so that the system can show recommendations for users. However, most approaches related to this approach are based on similarity algorithms, such as cosine, Pearson correlation coefficient, and mean squared difference. These methods are not much effective, especially in the cold user conditions. This paper presents a new user similarity model to improve the recommendation performance when only few ratings are available to calculate the similarities for each user. The model not only considers the local context information of user ratings, but also the global preference of user behavior. Experiments on three real data sets are implemented and compared with many state-of-the-art similarity measures. The results show the superiority of the new similarity model in recommended performance.
doi_str_mv 10.1016/j.knosys.2013.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559000159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705113003560</els_id><sourcerecordid>1559000159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-32539629a016f47da050d8dc0d61ad67d6dc7513037529e5b10a3e9f4b9f857c3</originalsourceid><addsrcrecordid>eNqNkTtPxDAQhC0EEsfjH1C4pEnYTeI4bpAQ4iUhaKC2fPYGfCQx2DnQ_XuMjhpRbbEzo9n9GDtBKBGwPVuVb1NIm1RWgHWJWAK0O2yBnawK2YDaZQtQAgoJAvfZQUorAKgq7Bbs4YJP9MXXiSJPfvSDiX7e8DE4GvgcuB_fY_gkPr8SN9auo7EbHnpuwzCYZYhm9nnb-2Gm6KeXI7bXmyHR8e88ZM_XV0-Xt8X9483d5cV9YQXKuagrUau2Uia37xvpDAhwnbPgWjSula51VgqsoZaiUiSWCKYm1TdL1XdC2vqQnW5zc7uPNaVZjz5Zyp0mCuukUQiVb0Sh_iNFaGXX_Udag-qgQZmlzVZqY0gpUq_fox9N3GgE_QNFr_QWiv6BohF1hpJt51sb5ed8eoo6WU-TJecj2Vm74P8O-AZsppZv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530980417</pqid></control><display><type>article</type><title>A new user similarity model to improve the accuracy of collaborative filtering</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Haifeng ; Hu, Zheng ; Mian, Ahmad ; Tian, Hui ; Zhu, Xuzhen</creator><creatorcontrib>Liu, Haifeng ; Hu, Zheng ; Mian, Ahmad ; Tian, Hui ; Zhu, Xuzhen</creatorcontrib><description>•We first analyze the shortages of the existing similarity measures in collaborative filtering.•And second, we propose a new user similarity model to overcome these drawbacks.•We compare the new model with many other similarity measures on two real data sets.•Experiments show that the new model can reach better performance than many existing similarity measures. Collaborative filtering has become one of the most used approaches to provide personalized services for users. The key of this approach is to find similar users or items using user-item rating matrix so that the system can show recommendations for users. However, most approaches related to this approach are based on similarity algorithms, such as cosine, Pearson correlation coefficient, and mean squared difference. These methods are not much effective, especially in the cold user conditions. This paper presents a new user similarity model to improve the recommendation performance when only few ratings are available to calculate the similarities for each user. The model not only considers the local context information of user ratings, but also the global preference of user behavior. Experiments on three real data sets are implemented and compared with many state-of-the-art similarity measures. The results show the superiority of the new similarity model in recommended performance.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2013.11.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Cold user ; Collaboration ; Collaborative filtering ; Filtering ; Filtering systems ; Filtration ; Knowledge base ; Ratings ; Recommended precision ; Recommender systems ; Similarity ; Similarity measures ; State of the art ; User similarity ; Users</subject><ispartof>Knowledge-based systems, 2014-01, Vol.56, p.156-166</ispartof><rights>2013 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-32539629a016f47da050d8dc0d61ad67d6dc7513037529e5b10a3e9f4b9f857c3</citedby><cites>FETCH-LOGICAL-c517t-32539629a016f47da050d8dc0d61ad67d6dc7513037529e5b10a3e9f4b9f857c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705113003560$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><creatorcontrib>Mian, Ahmad</creatorcontrib><creatorcontrib>Tian, Hui</creatorcontrib><creatorcontrib>Zhu, Xuzhen</creatorcontrib><title>A new user similarity model to improve the accuracy of collaborative filtering</title><title>Knowledge-based systems</title><description>•We first analyze the shortages of the existing similarity measures in collaborative filtering.•And second, we propose a new user similarity model to overcome these drawbacks.•We compare the new model with many other similarity measures on two real data sets.•Experiments show that the new model can reach better performance than many existing similarity measures. Collaborative filtering has become one of the most used approaches to provide personalized services for users. The key of this approach is to find similar users or items using user-item rating matrix so that the system can show recommendations for users. However, most approaches related to this approach are based on similarity algorithms, such as cosine, Pearson correlation coefficient, and mean squared difference. These methods are not much effective, especially in the cold user conditions. This paper presents a new user similarity model to improve the recommendation performance when only few ratings are available to calculate the similarities for each user. The model not only considers the local context information of user ratings, but also the global preference of user behavior. Experiments on three real data sets are implemented and compared with many state-of-the-art similarity measures. The results show the superiority of the new similarity model in recommended performance.</description><subject>Algorithms</subject><subject>Cold user</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Filtering</subject><subject>Filtering systems</subject><subject>Filtration</subject><subject>Knowledge base</subject><subject>Ratings</subject><subject>Recommended precision</subject><subject>Recommender systems</subject><subject>Similarity</subject><subject>Similarity measures</subject><subject>State of the art</subject><subject>User similarity</subject><subject>Users</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPxDAQhC0EEsfjH1C4pEnYTeI4bpAQ4iUhaKC2fPYGfCQx2DnQ_XuMjhpRbbEzo9n9GDtBKBGwPVuVb1NIm1RWgHWJWAK0O2yBnawK2YDaZQtQAgoJAvfZQUorAKgq7Bbs4YJP9MXXiSJPfvSDiX7e8DE4GvgcuB_fY_gkPr8SN9auo7EbHnpuwzCYZYhm9nnb-2Gm6KeXI7bXmyHR8e88ZM_XV0-Xt8X9483d5cV9YQXKuagrUau2Uia37xvpDAhwnbPgWjSula51VgqsoZaiUiSWCKYm1TdL1XdC2vqQnW5zc7uPNaVZjz5Zyp0mCuukUQiVb0Sh_iNFaGXX_Udag-qgQZmlzVZqY0gpUq_fox9N3GgE_QNFr_QWiv6BohF1hpJt51sb5ed8eoo6WU-TJecj2Vm74P8O-AZsppZv</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Liu, Haifeng</creator><creator>Hu, Zheng</creator><creator>Mian, Ahmad</creator><creator>Tian, Hui</creator><creator>Zhu, Xuzhen</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>201401</creationdate><title>A new user similarity model to improve the accuracy of collaborative filtering</title><author>Liu, Haifeng ; Hu, Zheng ; Mian, Ahmad ; Tian, Hui ; Zhu, Xuzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-32539629a016f47da050d8dc0d61ad67d6dc7513037529e5b10a3e9f4b9f857c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Cold user</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Filtering</topic><topic>Filtering systems</topic><topic>Filtration</topic><topic>Knowledge base</topic><topic>Ratings</topic><topic>Recommended precision</topic><topic>Recommender systems</topic><topic>Similarity</topic><topic>Similarity measures</topic><topic>State of the art</topic><topic>User similarity</topic><topic>Users</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><creatorcontrib>Mian, Ahmad</creatorcontrib><creatorcontrib>Tian, Hui</creatorcontrib><creatorcontrib>Zhu, Xuzhen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haifeng</au><au>Hu, Zheng</au><au>Mian, Ahmad</au><au>Tian, Hui</au><au>Zhu, Xuzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new user similarity model to improve the accuracy of collaborative filtering</atitle><jtitle>Knowledge-based systems</jtitle><date>2014-01</date><risdate>2014</risdate><volume>56</volume><spage>156</spage><epage>166</epage><pages>156-166</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>•We first analyze the shortages of the existing similarity measures in collaborative filtering.•And second, we propose a new user similarity model to overcome these drawbacks.•We compare the new model with many other similarity measures on two real data sets.•Experiments show that the new model can reach better performance than many existing similarity measures. Collaborative filtering has become one of the most used approaches to provide personalized services for users. The key of this approach is to find similar users or items using user-item rating matrix so that the system can show recommendations for users. However, most approaches related to this approach are based on similarity algorithms, such as cosine, Pearson correlation coefficient, and mean squared difference. These methods are not much effective, especially in the cold user conditions. This paper presents a new user similarity model to improve the recommendation performance when only few ratings are available to calculate the similarities for each user. The model not only considers the local context information of user ratings, but also the global preference of user behavior. Experiments on three real data sets are implemented and compared with many state-of-the-art similarity measures. The results show the superiority of the new similarity model in recommended performance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2013.11.006</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2014-01, Vol.56, p.156-166
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_1559000159
source Elsevier ScienceDirect Journals
subjects Algorithms
Cold user
Collaboration
Collaborative filtering
Filtering
Filtering systems
Filtration
Knowledge base
Ratings
Recommended precision
Recommender systems
Similarity
Similarity measures
State of the art
User similarity
Users
title A new user similarity model to improve the accuracy of collaborative filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20user%20similarity%20model%20to%20improve%20the%20accuracy%20of%20collaborative%20filtering&rft.jtitle=Knowledge-based%20systems&rft.au=Liu,%20Haifeng&rft.date=2014-01&rft.volume=56&rft.spage=156&rft.epage=166&rft.pages=156-166&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2013.11.006&rft_dat=%3Cproquest_cross%3E1559000159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530980417&rft_id=info:pmid/&rft_els_id=S0950705113003560&rfr_iscdi=true