Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate
We have identified a new gene, PFK27, that encodes a second inducible 6-phosphofructo-2-kinase in the yeast Saccharomyces cerevisiae. Sequencing shows an open reading frame of 397 amino acids and 45.3 kDa. Amino acid sequence comparisons with other bifunctional 6-phosphofructo-2-kinase/fructose-2,6-...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 1996-04, Vol.20 (1), p.65-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Molecular microbiology |
container_volume | 20 |
creator | Boles, E Gohlmann, H.W.H Zimmermann, F.K |
description | We have identified a new gene, PFK27, that encodes a second inducible 6-phosphofructo-2-kinase in the yeast Saccharomyces cerevisiae. Sequencing shows an open reading frame of 397 amino acids and 45.3 kDa. Amino acid sequence comparisons with other bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoenzymes of various organisms revealed similarities only to the kinase domains. Expression of PFK27 was induced severalfold by glucose and sucrose, but not by galactose or maltose, suggesting that sugar transport might be involved in triggering the induction signal. We have constructed a mutant strain devoid of any fructose-2,6-bisphosphate. The mutant strain grew well on several kinds and concentrations of carbon sources. The levels of hexose phosphates in the cells were increased, but flux rates for glucose utilization and ethanol production were similar to the wild-type strain. However, after the transfer of the mutant cells from respiratory to fermentative growth conditions, growth, glucose consumption and ethanol production were delayed in a transition phase. Our results show that fructose-2,6-bisphosphate is an important effector in vivo of the 6-phosphofructo-1 -kinase/fructose-1,6-bisphosphatase enzyme pair, and is involved in the initiation of glycolysis during the transition to a fermentative mode of metabolism. Nevertheless, it can be effectively replaced by other effectors and regulatory mechanisms during growth on glucose. |
doi_str_mv | 10.1111/j.1365-2958.1996.tb02489.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15576334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15576334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-f6bfc978adbaf5ab3ae7bc65ca645f46172379304377c4df35e09a0cceea799d3</originalsourceid><addsrcrecordid>eNqVkUFv1DAQhSMEEkvhN2Bx4FQHO47tGIkDWhWo1IoDVOJmTRx710vWXmxH7fIf-M8kSsWdkUZzeO97h3lV9YaSms7z7lBTJjhuFO9qqpSoS0-atlP1w5Nq8096Wm2I4gSzrvnxvHqR84EQyohgm-rPdozBhx2KDgHK1sQwoJ0NFtlg4rAoAp_2Mc_r0mRKxA3-6QNki3xAZwu5XCKYIbOHBKbY5H9D8TEsicepQCgolwQ-ZHTvyz5OBa1B2eLmUuDe5zUfin1ZPXMwZvvq8V5Ud5-uvm-_4Juvn6-3H2-wYZJw7ETvjJIdDD04Dj0DK3sjuAHRctcKKhsmFSMtk9K0g2PcEgXEGGtBKjWwi-rtmntK8ddkc9FHn40dRwg2TllTzqVgrJ2N71ejSTHnZJ0-JX-EdNaU6KUBfdDLm_XyZr00oB8b0A8z_GGF7_1oz_9B6tvba8Fn_vXKO4gadslnffetWZqjnHZCMfYXlHya0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15576334</pqid></control><display><type>article</type><title>Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate</title><source>Access via Wiley Online Library</source><creator>Boles, E ; Gohlmann, H.W.H ; Zimmermann, F.K</creator><creatorcontrib>Boles, E ; Gohlmann, H.W.H ; Zimmermann, F.K</creatorcontrib><description>We have identified a new gene, PFK27, that encodes a second inducible 6-phosphofructo-2-kinase in the yeast Saccharomyces cerevisiae. Sequencing shows an open reading frame of 397 amino acids and 45.3 kDa. Amino acid sequence comparisons with other bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoenzymes of various organisms revealed similarities only to the kinase domains. Expression of PFK27 was induced severalfold by glucose and sucrose, but not by galactose or maltose, suggesting that sugar transport might be involved in triggering the induction signal. We have constructed a mutant strain devoid of any fructose-2,6-bisphosphate. The mutant strain grew well on several kinds and concentrations of carbon sources. The levels of hexose phosphates in the cells were increased, but flux rates for glucose utilization and ethanol production were similar to the wild-type strain. However, after the transfer of the mutant cells from respiratory to fermentative growth conditions, growth, glucose consumption and ethanol production were delayed in a transition phase. Our results show that fructose-2,6-bisphosphate is an important effector in vivo of the 6-phosphofructo-1 -kinase/fructose-1,6-bisphosphatase enzyme pair, and is involved in the initiation of glycolysis during the transition to a fermentative mode of metabolism. Nevertheless, it can be effectively replaced by other effectors and regulatory mechanisms during growth on glucose.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.1996.tb02489.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>amino acid sequences ; carbohydrate metabolism ; cloning ; comparisons ; ethanol production ; fermentation ; genetic code ; growth ; isozymes ; molecular sequence data ; pfk27 gene ; phosphofructokinase ; Saccharomyces cerevisiae ; sequence alignment ; structural genes ; sugar phosphates</subject><ispartof>Molecular microbiology, 1996-04, Vol.20 (1), p.65-76</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-f6bfc978adbaf5ab3ae7bc65ca645f46172379304377c4df35e09a0cceea799d3</citedby><cites>FETCH-LOGICAL-c3705-f6bfc978adbaf5ab3ae7bc65ca645f46172379304377c4df35e09a0cceea799d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.1996.tb02489.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.1996.tb02489.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Boles, E</creatorcontrib><creatorcontrib>Gohlmann, H.W.H</creatorcontrib><creatorcontrib>Zimmermann, F.K</creatorcontrib><title>Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate</title><title>Molecular microbiology</title><description>We have identified a new gene, PFK27, that encodes a second inducible 6-phosphofructo-2-kinase in the yeast Saccharomyces cerevisiae. Sequencing shows an open reading frame of 397 amino acids and 45.3 kDa. Amino acid sequence comparisons with other bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoenzymes of various organisms revealed similarities only to the kinase domains. Expression of PFK27 was induced severalfold by glucose and sucrose, but not by galactose or maltose, suggesting that sugar transport might be involved in triggering the induction signal. We have constructed a mutant strain devoid of any fructose-2,6-bisphosphate. The mutant strain grew well on several kinds and concentrations of carbon sources. The levels of hexose phosphates in the cells were increased, but flux rates for glucose utilization and ethanol production were similar to the wild-type strain. However, after the transfer of the mutant cells from respiratory to fermentative growth conditions, growth, glucose consumption and ethanol production were delayed in a transition phase. Our results show that fructose-2,6-bisphosphate is an important effector in vivo of the 6-phosphofructo-1 -kinase/fructose-1,6-bisphosphatase enzyme pair, and is involved in the initiation of glycolysis during the transition to a fermentative mode of metabolism. Nevertheless, it can be effectively replaced by other effectors and regulatory mechanisms during growth on glucose.</description><subject>amino acid sequences</subject><subject>carbohydrate metabolism</subject><subject>cloning</subject><subject>comparisons</subject><subject>ethanol production</subject><subject>fermentation</subject><subject>genetic code</subject><subject>growth</subject><subject>isozymes</subject><subject>molecular sequence data</subject><subject>pfk27 gene</subject><subject>phosphofructokinase</subject><subject>Saccharomyces cerevisiae</subject><subject>sequence alignment</subject><subject>structural genes</subject><subject>sugar phosphates</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqVkUFv1DAQhSMEEkvhN2Bx4FQHO47tGIkDWhWo1IoDVOJmTRx710vWXmxH7fIf-M8kSsWdkUZzeO97h3lV9YaSms7z7lBTJjhuFO9qqpSoS0-atlP1w5Nq8096Wm2I4gSzrvnxvHqR84EQyohgm-rPdozBhx2KDgHK1sQwoJ0NFtlg4rAoAp_2Mc_r0mRKxA3-6QNki3xAZwu5XCKYIbOHBKbY5H9D8TEsicepQCgolwQ-ZHTvyz5OBa1B2eLmUuDe5zUfin1ZPXMwZvvq8V5Ud5-uvm-_4Juvn6-3H2-wYZJw7ETvjJIdDD04Dj0DK3sjuAHRctcKKhsmFSMtk9K0g2PcEgXEGGtBKjWwi-rtmntK8ddkc9FHn40dRwg2TllTzqVgrJ2N71ejSTHnZJ0-JX-EdNaU6KUBfdDLm_XyZr00oB8b0A8z_GGF7_1oz_9B6tvba8Fn_vXKO4gadslnffetWZqjnHZCMfYXlHya0w</recordid><startdate>199604</startdate><enddate>199604</enddate><creator>Boles, E</creator><creator>Gohlmann, H.W.H</creator><creator>Zimmermann, F.K</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope></search><sort><creationdate>199604</creationdate><title>Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate</title><author>Boles, E ; Gohlmann, H.W.H ; Zimmermann, F.K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-f6bfc978adbaf5ab3ae7bc65ca645f46172379304377c4df35e09a0cceea799d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>amino acid sequences</topic><topic>carbohydrate metabolism</topic><topic>cloning</topic><topic>comparisons</topic><topic>ethanol production</topic><topic>fermentation</topic><topic>genetic code</topic><topic>growth</topic><topic>isozymes</topic><topic>molecular sequence data</topic><topic>pfk27 gene</topic><topic>phosphofructokinase</topic><topic>Saccharomyces cerevisiae</topic><topic>sequence alignment</topic><topic>structural genes</topic><topic>sugar phosphates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boles, E</creatorcontrib><creatorcontrib>Gohlmann, H.W.H</creatorcontrib><creatorcontrib>Zimmermann, F.K</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boles, E</au><au>Gohlmann, H.W.H</au><au>Zimmermann, F.K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate</atitle><jtitle>Molecular microbiology</jtitle><date>1996-04</date><risdate>1996</risdate><volume>20</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>We have identified a new gene, PFK27, that encodes a second inducible 6-phosphofructo-2-kinase in the yeast Saccharomyces cerevisiae. Sequencing shows an open reading frame of 397 amino acids and 45.3 kDa. Amino acid sequence comparisons with other bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoenzymes of various organisms revealed similarities only to the kinase domains. Expression of PFK27 was induced severalfold by glucose and sucrose, but not by galactose or maltose, suggesting that sugar transport might be involved in triggering the induction signal. We have constructed a mutant strain devoid of any fructose-2,6-bisphosphate. The mutant strain grew well on several kinds and concentrations of carbon sources. The levels of hexose phosphates in the cells were increased, but flux rates for glucose utilization and ethanol production were similar to the wild-type strain. However, after the transfer of the mutant cells from respiratory to fermentative growth conditions, growth, glucose consumption and ethanol production were delayed in a transition phase. Our results show that fructose-2,6-bisphosphate is an important effector in vivo of the 6-phosphofructo-1 -kinase/fructose-1,6-bisphosphatase enzyme pair, and is involved in the initiation of glycolysis during the transition to a fermentative mode of metabolism. Nevertheless, it can be effectively replaced by other effectors and regulatory mechanisms during growth on glucose.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2958.1996.tb02489.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 1996-04, Vol.20 (1), p.65-76 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_15576334 |
source | Access via Wiley Online Library |
subjects | amino acid sequences carbohydrate metabolism cloning comparisons ethanol production fermentation genetic code growth isozymes molecular sequence data pfk27 gene phosphofructokinase Saccharomyces cerevisiae sequence alignment structural genes sugar phosphates |
title | Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning%20of%20a%20second%20gene%20encoding%206-phosphofructo-2-kinase%20in%20yeast,%20and%20characterization%20of%20mutant%20strains%20without%20fructose-2,6-bisphosphate&rft.jtitle=Molecular%20microbiology&rft.au=Boles,%20E&rft.date=1996-04&rft.volume=20&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.1996.tb02489.x&rft_dat=%3Cproquest_cross%3E15576334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15576334&rft_id=info:pmid/&rfr_iscdi=true |