Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles

Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2014-09, Vol.184 (3), p.384-406
Hauptverfasser: Appling, Alison P., Heffernan, James B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 3
container_start_page 384
container_title The American naturalist
container_volume 184
creator Appling, Alison P.
Heffernan, James B.
description Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient storage limits, circadian rhythms, or enzyme kinetics cause one nutrient to be processed faster than another. To explore the interactions among these coupling and decoupling mechanisms, we introduce a model in which organisms process resources via uptake, excretion, growth, respiration, and mortality according to adjustable trait parameters. The model predicts that uptake can couple the input of one nutrient to the export of another in a ratio reflecting biological demand stoichiometry, but coupling occurs only when the input nutrient is limiting. Temporal nutrient coupling may, therefore, be a useful indicator of ecosystem limitation status. Fine-scale patterns of nutrient coupling are further modulated by, and potentially diagnostic of, physiological traits governing growth, uptake, and internal nutrient storage. Together, limitation status and physiological traits create a complex and informative relationship between nutrient inputs and exports. Understanding the mechanisms behind that relationship could enrich interpretations of fine-scale time-series data such as those now emerging from in situ solute sensors.
doi_str_mv 10.1086/677282
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555622717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/677282</jstor_id><sourcerecordid>10.1086/677282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ff4829b5d8331df94dbfb4376c49a6be0d040c63519583a0a907f43e77f2f7203</originalsourceid><addsrcrecordid>eNqN0V2L1DAUBuAgiju76k-QgCLrRTWfTXOps64K4weo1yVNT2YytE03SS_m35tlVgcEYa9CkoeTc_Ii9IySN5Q09dtaKdawB2hFJVeV5Iw_RCtCCK8IFeoMnae0L1sttHyMzpikgpbzFWq_Ljl6mDLe-NFnk32YsJl6_H13SD4MYXvAX6D3JgPOO8DXfoLqhzUD4MsreG3DMg9-2uLg8HsfthDsDkZf7vH6YAdIT9AjZ4YET-_WC_Tr-sPP9adq8-3j5_W7TWUFJ7lyTjRMd7JvOKe906LvXCe4qq3Qpu6A9EQQW3NJtWy4IUYT5QQHpRxzihF-gS6PdecYbhZIuR19sjAMZoKwpJbKum44kVLfg0pZM6aoKvTFP3QfljiVQW5Vo3RDCS_q1VHZGFKK4No5-tHEQ0tJe5tOe0ynwOd35ZZuhP4v-xPHqbXF7sonbsMcIaXTo8c67dy7Ql_eg54m2Kcc4v8a-w0vp60q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558798103</pqid></control><display><type>article</type><title>Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>JSTOR</source><creator>Appling, Alison P. ; Heffernan, James B.</creator><contributor>Andrew J. Kerkhoff ; Judith L. Bronstein</contributor><creatorcontrib>Appling, Alison P. ; Heffernan, James B. ; Andrew J. Kerkhoff ; Judith L. Bronstein</creatorcontrib><description>Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient storage limits, circadian rhythms, or enzyme kinetics cause one nutrient to be processed faster than another. To explore the interactions among these coupling and decoupling mechanisms, we introduce a model in which organisms process resources via uptake, excretion, growth, respiration, and mortality according to adjustable trait parameters. The model predicts that uptake can couple the input of one nutrient to the export of another in a ratio reflecting biological demand stoichiometry, but coupling occurs only when the input nutrient is limiting. Temporal nutrient coupling may, therefore, be a useful indicator of ecosystem limitation status. Fine-scale patterns of nutrient coupling are further modulated by, and potentially diagnostic of, physiological traits governing growth, uptake, and internal nutrient storage. Together, limitation status and physiological traits create a complex and informative relationship between nutrient inputs and exports. Understanding the mechanisms behind that relationship could enrich interpretations of fine-scale time-series data such as those now emerging from in situ solute sensors.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/677282</identifier><identifier>PMID: 25141147</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: University of Chicago Press</publisher><subject>Biogeochemistry ; Biomass ; Biomass production ; Cellular metabolism ; Circadian rhythm ; Ecological and Environmental Phenomena ; Ecosystem ; Ecosystem models ; Ecosystems ; Enzyme kinetics ; Kinetics ; Models, Biological ; Models, Chemical ; Nitrogen - metabolism ; Nutrient nutrient interactions ; Nutrient uptake ; Nutrients ; Nutritional Physiological Phenomena - physiology ; Phosphorus - metabolism ; Rivers - chemistry ; Solutes</subject><ispartof>The American naturalist, 2014-09, Vol.184 (3), p.384-406</ispartof><rights>2014 by The University of Chicago. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ff4829b5d8331df94dbfb4376c49a6be0d040c63519583a0a907f43e77f2f7203</citedby><cites>FETCH-LOGICAL-c430t-ff4829b5d8331df94dbfb4376c49a6be0d040c63519583a0a907f43e77f2f7203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25141147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Andrew J. Kerkhoff</contributor><contributor>Judith L. Bronstein</contributor><creatorcontrib>Appling, Alison P.</creatorcontrib><creatorcontrib>Heffernan, James B.</creatorcontrib><title>Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient storage limits, circadian rhythms, or enzyme kinetics cause one nutrient to be processed faster than another. To explore the interactions among these coupling and decoupling mechanisms, we introduce a model in which organisms process resources via uptake, excretion, growth, respiration, and mortality according to adjustable trait parameters. The model predicts that uptake can couple the input of one nutrient to the export of another in a ratio reflecting biological demand stoichiometry, but coupling occurs only when the input nutrient is limiting. Temporal nutrient coupling may, therefore, be a useful indicator of ecosystem limitation status. Fine-scale patterns of nutrient coupling are further modulated by, and potentially diagnostic of, physiological traits governing growth, uptake, and internal nutrient storage. Together, limitation status and physiological traits create a complex and informative relationship between nutrient inputs and exports. Understanding the mechanisms behind that relationship could enrich interpretations of fine-scale time-series data such as those now emerging from in situ solute sensors.</description><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Biomass production</subject><subject>Cellular metabolism</subject><subject>Circadian rhythm</subject><subject>Ecological and Environmental Phenomena</subject><subject>Ecosystem</subject><subject>Ecosystem models</subject><subject>Ecosystems</subject><subject>Enzyme kinetics</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Nitrogen - metabolism</subject><subject>Nutrient nutrient interactions</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Nutritional Physiological Phenomena - physiology</subject><subject>Phosphorus - metabolism</subject><subject>Rivers - chemistry</subject><subject>Solutes</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V2L1DAUBuAgiju76k-QgCLrRTWfTXOps64K4weo1yVNT2YytE03SS_m35tlVgcEYa9CkoeTc_Ii9IySN5Q09dtaKdawB2hFJVeV5Iw_RCtCCK8IFeoMnae0L1sttHyMzpikgpbzFWq_Ljl6mDLe-NFnk32YsJl6_H13SD4MYXvAX6D3JgPOO8DXfoLqhzUD4MsreG3DMg9-2uLg8HsfthDsDkZf7vH6YAdIT9AjZ4YET-_WC_Tr-sPP9adq8-3j5_W7TWUFJ7lyTjRMd7JvOKe906LvXCe4qq3Qpu6A9EQQW3NJtWy4IUYT5QQHpRxzihF-gS6PdecYbhZIuR19sjAMZoKwpJbKum44kVLfg0pZM6aoKvTFP3QfljiVQW5Vo3RDCS_q1VHZGFKK4No5-tHEQ0tJe5tOe0ynwOd35ZZuhP4v-xPHqbXF7sonbsMcIaXTo8c67dy7Ql_eg54m2Kcc4v8a-w0vp60q</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Appling, Alison P.</creator><creator>Heffernan, James B.</creator><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7U6</scope></search><sort><creationdate>20140901</creationdate><title>Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles</title><author>Appling, Alison P. ; Heffernan, James B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ff4829b5d8331df94dbfb4376c49a6be0d040c63519583a0a907f43e77f2f7203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Biomass production</topic><topic>Cellular metabolism</topic><topic>Circadian rhythm</topic><topic>Ecological and Environmental Phenomena</topic><topic>Ecosystem</topic><topic>Ecosystem models</topic><topic>Ecosystems</topic><topic>Enzyme kinetics</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Nitrogen - metabolism</topic><topic>Nutrient nutrient interactions</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Nutritional Physiological Phenomena - physiology</topic><topic>Phosphorus - metabolism</topic><topic>Rivers - chemistry</topic><topic>Solutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appling, Alison P.</creatorcontrib><creatorcontrib>Heffernan, James B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Sustainability Science Abstracts</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appling, Alison P.</au><au>Heffernan, James B.</au><au>Andrew J. Kerkhoff</au><au>Judith L. Bronstein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>184</volume><issue>3</issue><spage>384</spage><epage>406</epage><pages>384-406</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>Nutrients in the environment are coupled over broad timescales (days to seasons) when organisms add or withdraw multiple nutrients simultaneously and in ratios that are roughly constant. But at finer timescales (seconds to days), nutrients become decoupled if physiological traits such as nutrient storage limits, circadian rhythms, or enzyme kinetics cause one nutrient to be processed faster than another. To explore the interactions among these coupling and decoupling mechanisms, we introduce a model in which organisms process resources via uptake, excretion, growth, respiration, and mortality according to adjustable trait parameters. The model predicts that uptake can couple the input of one nutrient to the export of another in a ratio reflecting biological demand stoichiometry, but coupling occurs only when the input nutrient is limiting. Temporal nutrient coupling may, therefore, be a useful indicator of ecosystem limitation status. Fine-scale patterns of nutrient coupling are further modulated by, and potentially diagnostic of, physiological traits governing growth, uptake, and internal nutrient storage. Together, limitation status and physiological traits create a complex and informative relationship between nutrient inputs and exports. Understanding the mechanisms behind that relationship could enrich interpretations of fine-scale time-series data such as those now emerging from in situ solute sensors.</abstract><cop>United States</cop><pub>University of Chicago Press</pub><pmid>25141147</pmid><doi>10.1086/677282</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2014-09, Vol.184 (3), p.384-406
issn 0003-0147
1537-5323
language eng
recordid cdi_proquest_miscellaneous_1555622717
source MEDLINE; Free E-Journal (出版社公開部分のみ); JSTOR
subjects Biogeochemistry
Biomass
Biomass production
Cellular metabolism
Circadian rhythm
Ecological and Environmental Phenomena
Ecosystem
Ecosystem models
Ecosystems
Enzyme kinetics
Kinetics
Models, Biological
Models, Chemical
Nitrogen - metabolism
Nutrient nutrient interactions
Nutrient uptake
Nutrients
Nutritional Physiological Phenomena - physiology
Phosphorus - metabolism
Rivers - chemistry
Solutes
title Nutrient Limitation and Physiology Mediate the Fine-Scale (De)coupling of Biogeochemical Cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutrient%20Limitation%20and%20Physiology%20Mediate%20the%20Fine-Scale%20(De)coupling%20of%20Biogeochemical%20Cycles&rft.jtitle=The%20American%20naturalist&rft.au=Appling,%20Alison%20P.&rft.date=2014-09-01&rft.volume=184&rft.issue=3&rft.spage=384&rft.epage=406&rft.pages=384-406&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/677282&rft_dat=%3Cjstor_proqu%3E10.1086/677282%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558798103&rft_id=info:pmid/25141147&rft_jstor_id=10.1086/677282&rfr_iscdi=true