Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of Melia azedarach

Nine limonoids, 1–9, one apocarotenoid, 11, one alkaloid, 12, and one steroid, 13, from the leaf extract; and one triterpenoid, 10, five steroids, 14–18, and two flavonoids, 19 and 20, from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biodiversity 2014-08, Vol.11 (8), p.1121-1139
Hauptverfasser: Pan, Xin, Matsumoto, Masahiro, Nishimoto, Yuki, Ogihara, Eri, Zhang, Jie, Ukiya, Motohiko, Tokuda, Harukuni, Koike, Kazuo, Akihisa, Momoko, Akihisa, Toshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1139
container_issue 8
container_start_page 1121
container_title Chemistry & biodiversity
container_volume 11
creator Pan, Xin
Matsumoto, Masahiro
Nishimoto, Yuki
Ogihara, Eri
Zhang, Jie
Ukiya, Motohiko
Tokuda, Harukuni
Koike, Kazuo
Akihisa, Momoko
Akihisa, Toshihiro
description Nine limonoids, 1–9, one apocarotenoid, 11, one alkaloid, 12, and one steroid, 13, from the leaf extract; and one triterpenoid, 10, five steroids, 14–18, and two flavonoids, 19 and 20, from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, three compounds, 4–6, were new, and their structures were established as 3‐deacetyl‐28‐oxosalannolactone, 3‐deacetyl‐28‐oxosalanninolide, and 3‐deacetyl‐17‐defurano‐17,28‐dioxosalannin, respectively, on the basis of extensive spectroscopic analyses and comparison with literature data. All of the isolated compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin (3) against HL60 and AZ521 cells, and methyl kulonate (10) against HL60 cells exhibited potent cytotoxicities with IC50 values in the range of 2.8–5.8 μM. In addition, upon evaluation of compounds 1–13 against production of nitric oxide (NO) in mouse macrophage RAW 264.7 cells induced by lipopolysaccharide (LPS), seven, i.e., trichilinin B (1), 4, ohchinin (7), 23‐hydroxyohchininolide (8), 21‐hydroxyisoohchininolide (9), 10, and methyl indole 3‐carboxylate (12), inhibited production of NO with IC50 values in the range of 4.6–87.3 μM with no, or almost no, toxicity to the cells (IC50 93.2–100 μM). Western blot analysis revealed that compound 7 reduced the expression levels of the inducible NO synthase (iNOS) and COX‐2 proteins in a concentration‐dependent manner. Furthermore, compounds 5, 6, 13, and 18–20 exhibited potent inhibitory effects (IC50 299–381 molar ratio/32 pmol TPA) against EpsteinBarr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cell line.
doi_str_mv 10.1002/cbdv.201400190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555622357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3409895891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4770-27bc0cb074b1f2147567d75fbbf670c17df1165955aefd50c18013e128faa81e3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERUthyxJZYsMmU9uJ42TZBiiVhhmQgEpsLMc_GpckntrOMMMT9LHracoIsWF1r46-c3R1DwCvMJphhMiZbNVmRhAuEMI1egJOcIlJhqsKPT3sjByD5yHcJD7p1TNwTCguSkbrE3DX7KKLbmslFIOCCxt9WpdbqzT87J0aZbRuyK6GlW1tdH4Hz5OysdHqAJ2Bc9u7wVkVHuzLuNIeNq5fu3FImvGuh0mDcy02emIuhP-5d37SnRVQ_NZKeCFXL8CREV3QLx_nKfj24f3X5mM2X15eNefzTBaMoYywViLZIla02BBcMFoyxahpW1MyJDFTBuOS1pQKbRRNSoVwrjGpjBAV1vkpeDvlrr27HXWIvLdB6q4Tg3Zj4JhSWhKSU5bQN_-gN270Q7rugSJ5kdM8UbOJkt6F4LXha2974XccI77viO874oeOkuH1Y-zY9lod8D-lJKCegF-207v_xPHm4t33v8OzyWtD1NuDN_2clyxnlF8vLvnix3VdNF8Yr_N7QhGtOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555234353</pqid></control><display><type>article</type><title>Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of Melia azedarach</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Pan, Xin ; Matsumoto, Masahiro ; Nishimoto, Yuki ; Ogihara, Eri ; Zhang, Jie ; Ukiya, Motohiko ; Tokuda, Harukuni ; Koike, Kazuo ; Akihisa, Momoko ; Akihisa, Toshihiro</creator><creatorcontrib>Pan, Xin ; Matsumoto, Masahiro ; Nishimoto, Yuki ; Ogihara, Eri ; Zhang, Jie ; Ukiya, Motohiko ; Tokuda, Harukuni ; Koike, Kazuo ; Akihisa, Momoko ; Akihisa, Toshihiro</creatorcontrib><description>Nine limonoids, 1–9, one apocarotenoid, 11, one alkaloid, 12, and one steroid, 13, from the leaf extract; and one triterpenoid, 10, five steroids, 14–18, and two flavonoids, 19 and 20, from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, three compounds, 4–6, were new, and their structures were established as 3‐deacetyl‐28‐oxosalannolactone, 3‐deacetyl‐28‐oxosalanninolide, and 3‐deacetyl‐17‐defurano‐17,28‐dioxosalannin, respectively, on the basis of extensive spectroscopic analyses and comparison with literature data. All of the isolated compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin (3) against HL60 and AZ521 cells, and methyl kulonate (10) against HL60 cells exhibited potent cytotoxicities with IC50 values in the range of 2.8–5.8 μM. In addition, upon evaluation of compounds 1–13 against production of nitric oxide (NO) in mouse macrophage RAW 264.7 cells induced by lipopolysaccharide (LPS), seven, i.e., trichilinin B (1), 4, ohchinin (7), 23‐hydroxyohchininolide (8), 21‐hydroxyisoohchininolide (9), 10, and methyl indole 3‐carboxylate (12), inhibited production of NO with IC50 values in the range of 4.6–87.3 μM with no, or almost no, toxicity to the cells (IC50 93.2–100 μM). Western blot analysis revealed that compound 7 reduced the expression levels of the inducible NO synthase (iNOS) and COX‐2 proteins in a concentration‐dependent manner. Furthermore, compounds 5, 6, 13, and 18–20 exhibited potent inhibitory effects (IC50 299–381 molar ratio/32 pmol TPA) against EpsteinBarr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cell line.</description><identifier>ISSN: 1612-1872</identifier><identifier>EISSN: 1612-1880</identifier><identifier>DOI: 10.1002/cbdv.201400190</identifier><identifier>PMID: 25146759</identifier><language>eng</language><publisher>Zürich: WILEY-VCH Verlag</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - chemistry ; Antineoplastic Agents, Phytogenic - pharmacology ; Cell Line, Tumor ; Cyclooxygenase 2 Inhibitors - pharmacology ; Cyclooxygenase Inhibitors - pharmacology ; Cytotoxic activity ; EpsteinBarr virus early antigen ; HL-60 Cells ; Humans ; Inhibitory Concentration 50 ; Limonins - chemistry ; Limonins - isolation &amp; purification ; Limonins - pharmacology ; Limonoids ; Macrophages - drug effects ; Macrophages - metabolism ; Melia azedarach ; Melia azedarach - chemistry ; Mice ; Molecular Structure ; Nitric Oxide - metabolism ; Nitric Oxide Synthase Type II - antagonists &amp; inhibitors ; Nitric Oxide Synthase Type II - metabolism ; NO Production-inhibitory activity ; Plant Bark - chemistry ; Plant Leaves - chemistry ; Triterpenoids</subject><ispartof>Chemistry &amp; biodiversity, 2014-08, Vol.11 (8), p.1121-1139</ispartof><rights>Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich</rights><rights>Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.</rights><rights>Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zurich</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4770-27bc0cb074b1f2147567d75fbbf670c17df1165955aefd50c18013e128faa81e3</citedby><cites>FETCH-LOGICAL-c4770-27bc0cb074b1f2147567d75fbbf670c17df1165955aefd50c18013e128faa81e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbdv.201400190$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbdv.201400190$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25146759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Xin</creatorcontrib><creatorcontrib>Matsumoto, Masahiro</creatorcontrib><creatorcontrib>Nishimoto, Yuki</creatorcontrib><creatorcontrib>Ogihara, Eri</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ukiya, Motohiko</creatorcontrib><creatorcontrib>Tokuda, Harukuni</creatorcontrib><creatorcontrib>Koike, Kazuo</creatorcontrib><creatorcontrib>Akihisa, Momoko</creatorcontrib><creatorcontrib>Akihisa, Toshihiro</creatorcontrib><title>Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of Melia azedarach</title><title>Chemistry &amp; biodiversity</title><addtitle>Chemistry &amp; Biodiversity</addtitle><description>Nine limonoids, 1–9, one apocarotenoid, 11, one alkaloid, 12, and one steroid, 13, from the leaf extract; and one triterpenoid, 10, five steroids, 14–18, and two flavonoids, 19 and 20, from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, three compounds, 4–6, were new, and their structures were established as 3‐deacetyl‐28‐oxosalannolactone, 3‐deacetyl‐28‐oxosalanninolide, and 3‐deacetyl‐17‐defurano‐17,28‐dioxosalannin, respectively, on the basis of extensive spectroscopic analyses and comparison with literature data. All of the isolated compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin (3) against HL60 and AZ521 cells, and methyl kulonate (10) against HL60 cells exhibited potent cytotoxicities with IC50 values in the range of 2.8–5.8 μM. In addition, upon evaluation of compounds 1–13 against production of nitric oxide (NO) in mouse macrophage RAW 264.7 cells induced by lipopolysaccharide (LPS), seven, i.e., trichilinin B (1), 4, ohchinin (7), 23‐hydroxyohchininolide (8), 21‐hydroxyisoohchininolide (9), 10, and methyl indole 3‐carboxylate (12), inhibited production of NO with IC50 values in the range of 4.6–87.3 μM with no, or almost no, toxicity to the cells (IC50 93.2–100 μM). Western blot analysis revealed that compound 7 reduced the expression levels of the inducible NO synthase (iNOS) and COX‐2 proteins in a concentration‐dependent manner. Furthermore, compounds 5, 6, 13, and 18–20 exhibited potent inhibitory effects (IC50 299–381 molar ratio/32 pmol TPA) against EpsteinBarr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cell line.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cyclooxygenase 2 Inhibitors - pharmacology</subject><subject>Cyclooxygenase Inhibitors - pharmacology</subject><subject>Cytotoxic activity</subject><subject>EpsteinBarr virus early antigen</subject><subject>HL-60 Cells</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Limonins - chemistry</subject><subject>Limonins - isolation &amp; purification</subject><subject>Limonins - pharmacology</subject><subject>Limonoids</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Melia azedarach</subject><subject>Melia azedarach - chemistry</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase Type II - antagonists &amp; inhibitors</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>NO Production-inhibitory activity</subject><subject>Plant Bark - chemistry</subject><subject>Plant Leaves - chemistry</subject><subject>Triterpenoids</subject><issn>1612-1872</issn><issn>1612-1880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS1ERUthyxJZYsMmU9uJ42TZBiiVhhmQgEpsLMc_GpckntrOMMMT9LHracoIsWF1r46-c3R1DwCvMJphhMiZbNVmRhAuEMI1egJOcIlJhqsKPT3sjByD5yHcJD7p1TNwTCguSkbrE3DX7KKLbmslFIOCCxt9WpdbqzT87J0aZbRuyK6GlW1tdH4Hz5OysdHqAJ2Bc9u7wVkVHuzLuNIeNq5fu3FImvGuh0mDcy02emIuhP-5d37SnRVQ_NZKeCFXL8CREV3QLx_nKfj24f3X5mM2X15eNefzTBaMoYywViLZIla02BBcMFoyxahpW1MyJDFTBuOS1pQKbRRNSoVwrjGpjBAV1vkpeDvlrr27HXWIvLdB6q4Tg3Zj4JhSWhKSU5bQN_-gN270Q7rugSJ5kdM8UbOJkt6F4LXha2974XccI77viO874oeOkuH1Y-zY9lod8D-lJKCegF-207v_xPHm4t33v8OzyWtD1NuDN_2clyxnlF8vLvnix3VdNF8Yr_N7QhGtOQ</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Pan, Xin</creator><creator>Matsumoto, Masahiro</creator><creator>Nishimoto, Yuki</creator><creator>Ogihara, Eri</creator><creator>Zhang, Jie</creator><creator>Ukiya, Motohiko</creator><creator>Tokuda, Harukuni</creator><creator>Koike, Kazuo</creator><creator>Akihisa, Momoko</creator><creator>Akihisa, Toshihiro</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201408</creationdate><title>Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of Melia azedarach</title><author>Pan, Xin ; Matsumoto, Masahiro ; Nishimoto, Yuki ; Ogihara, Eri ; Zhang, Jie ; Ukiya, Motohiko ; Tokuda, Harukuni ; Koike, Kazuo ; Akihisa, Momoko ; Akihisa, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4770-27bc0cb074b1f2147567d75fbbf670c17df1165955aefd50c18013e128faa81e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cyclooxygenase 2 Inhibitors - pharmacology</topic><topic>Cyclooxygenase Inhibitors - pharmacology</topic><topic>Cytotoxic activity</topic><topic>EpsteinBarr virus early antigen</topic><topic>HL-60 Cells</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Limonins - chemistry</topic><topic>Limonins - isolation &amp; purification</topic><topic>Limonins - pharmacology</topic><topic>Limonoids</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Melia azedarach</topic><topic>Melia azedarach - chemistry</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase Type II - antagonists &amp; inhibitors</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>NO Production-inhibitory activity</topic><topic>Plant Bark - chemistry</topic><topic>Plant Leaves - chemistry</topic><topic>Triterpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xin</creatorcontrib><creatorcontrib>Matsumoto, Masahiro</creatorcontrib><creatorcontrib>Nishimoto, Yuki</creatorcontrib><creatorcontrib>Ogihara, Eri</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ukiya, Motohiko</creatorcontrib><creatorcontrib>Tokuda, Harukuni</creatorcontrib><creatorcontrib>Koike, Kazuo</creatorcontrib><creatorcontrib>Akihisa, Momoko</creatorcontrib><creatorcontrib>Akihisa, Toshihiro</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry &amp; biodiversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xin</au><au>Matsumoto, Masahiro</au><au>Nishimoto, Yuki</au><au>Ogihara, Eri</au><au>Zhang, Jie</au><au>Ukiya, Motohiko</au><au>Tokuda, Harukuni</au><au>Koike, Kazuo</au><au>Akihisa, Momoko</au><au>Akihisa, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of Melia azedarach</atitle><jtitle>Chemistry &amp; biodiversity</jtitle><addtitle>Chemistry &amp; Biodiversity</addtitle><date>2014-08</date><risdate>2014</risdate><volume>11</volume><issue>8</issue><spage>1121</spage><epage>1139</epage><pages>1121-1139</pages><issn>1612-1872</issn><eissn>1612-1880</eissn><abstract>Nine limonoids, 1–9, one apocarotenoid, 11, one alkaloid, 12, and one steroid, 13, from the leaf extract; and one triterpenoid, 10, five steroids, 14–18, and two flavonoids, 19 and 20, from the bark extract of Melia azedarach L. (Chinaberry tree; Meliaceae) were isolated. Among these compounds, three compounds, 4–6, were new, and their structures were established as 3‐deacetyl‐28‐oxosalannolactone, 3‐deacetyl‐28‐oxosalanninolide, and 3‐deacetyl‐17‐defurano‐17,28‐dioxosalannin, respectively, on the basis of extensive spectroscopic analyses and comparison with literature data. All of the isolated compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. 3‐Deacetyl‐4′‐demethyl‐28‐oxosalannin (3) against HL60 and AZ521 cells, and methyl kulonate (10) against HL60 cells exhibited potent cytotoxicities with IC50 values in the range of 2.8–5.8 μM. In addition, upon evaluation of compounds 1–13 against production of nitric oxide (NO) in mouse macrophage RAW 264.7 cells induced by lipopolysaccharide (LPS), seven, i.e., trichilinin B (1), 4, ohchinin (7), 23‐hydroxyohchininolide (8), 21‐hydroxyisoohchininolide (9), 10, and methyl indole 3‐carboxylate (12), inhibited production of NO with IC50 values in the range of 4.6–87.3 μM with no, or almost no, toxicity to the cells (IC50 93.2–100 μM). Western blot analysis revealed that compound 7 reduced the expression levels of the inducible NO synthase (iNOS) and COX‐2 proteins in a concentration‐dependent manner. Furthermore, compounds 5, 6, 13, and 18–20 exhibited potent inhibitory effects (IC50 299–381 molar ratio/32 pmol TPA) against EpsteinBarr virus early antigen (EBV‐EA) activation induced by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cell line.</abstract><cop>Zürich</cop><pub>WILEY-VCH Verlag</pub><pmid>25146759</pmid><doi>10.1002/cbdv.201400190</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-1872
ispartof Chemistry & biodiversity, 2014-08, Vol.11 (8), p.1121-1139
issn 1612-1872
1612-1880
language eng
recordid cdi_proquest_miscellaneous_1555622357
source MEDLINE; Access via Wiley Online Library
subjects Animals
Antineoplastic Agents, Phytogenic - chemistry
Antineoplastic Agents, Phytogenic - pharmacology
Cell Line, Tumor
Cyclooxygenase 2 Inhibitors - pharmacology
Cyclooxygenase Inhibitors - pharmacology
Cytotoxic activity
EpsteinBarr virus early antigen
HL-60 Cells
Humans
Inhibitory Concentration 50
Limonins - chemistry
Limonins - isolation & purification
Limonins - pharmacology
Limonoids
Macrophages - drug effects
Macrophages - metabolism
Melia azedarach
Melia azedarach - chemistry
Mice
Molecular Structure
Nitric Oxide - metabolism
Nitric Oxide Synthase Type II - antagonists & inhibitors
Nitric Oxide Synthase Type II - metabolism
NO Production-inhibitory activity
Plant Bark - chemistry
Plant Leaves - chemistry
Triterpenoids
title Cytotoxic and Nitric Oxide Production-Inhibitory Activities of Limonoids and Other Compounds from the Leaves and Bark of Melia azedarach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytotoxic%20and%20Nitric%20Oxide%20Production-Inhibitory%20Activities%20of%20Limonoids%20and%20Other%20Compounds%20from%20the%20Leaves%20and%20Bark%20of%20Melia%20azedarach&rft.jtitle=Chemistry%20&%20biodiversity&rft.au=Pan,%20Xin&rft.date=2014-08&rft.volume=11&rft.issue=8&rft.spage=1121&rft.epage=1139&rft.pages=1121-1139&rft.issn=1612-1872&rft.eissn=1612-1880&rft_id=info:doi/10.1002/cbdv.201400190&rft_dat=%3Cproquest_cross%3E3409895891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555234353&rft_id=info:pmid/25146759&rfr_iscdi=true