Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control
Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive de...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2014-06, Vol.82 (6), p.1380-1393 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 6 |
container_start_page | 1380 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 82 |
creator | Orsborn, Amy L. Moorman, Helene G. Overduin, Simon A. Shanechi, Maryam M. Dimitrov, Dragan F. Carmena, Jose M. |
description | Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses.
•Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks
Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance. |
doi_str_mv | 10.1016/j.neuron.2014.04.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555017944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314003638</els_id><sourcerecordid>3339472051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7uzqPxBp8OKlx6Q7nxdhmdVVGFRYvQkhnVSzGTOdNkkL--9NO6sHDyIU1KGeeuvjRegZwVuCCX912E6wpDhtO0zoFq8hH6ANwUq0lCj1EG2wVLzlnejP0HnOB1xBpshjdNZRRZkQYoO-7kLM4Np9jHNzBTY6SM2lM3Mxxcepubk1M-TmQx1lQvMpmFy89eWuGWNqbr75EMYl_CrHOcVcbqHWm12cSorhCXo0mpDh6X2-QF_evvm8e9fuP16_313uW8t6Vlo5dIYPgzIEQKmBKDewwckRk2HElHecMykkkxSUHaUagQtuO0eACewENv0FennSrSt8XyAXffTZQghmgrhkTRhjmAhF6X-gvaKikxhX9MVf6CEuaaqHrJToq56SlaInytbzc4JRz8kfTbrTBOvVKH3QJ6P0apTGa6xtz-_Fl-EI7k_Tb2cq8PoEQH3cDw9JZ-thsuB8Alu0i_7fE34CP7amMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537379498</pqid></control><display><type>article</type><title>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Orsborn, Amy L. ; Moorman, Helene G. ; Overduin, Simon A. ; Shanechi, Maryam M. ; Dimitrov, Dragan F. ; Carmena, Jose M.</creator><creatorcontrib>Orsborn, Amy L. ; Moorman, Helene G. ; Overduin, Simon A. ; Shanechi, Maryam M. ; Dimitrov, Dragan F. ; Carmena, Jose M.</creatorcontrib><description>Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses.
•Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks
Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.04.048</identifier><identifier>PMID: 24945777</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Behavior ; Biofeedback ; Brain research ; Feasibility Studies ; Macaca mulatta ; Male ; Motor Cortex - physiology ; Motor Skills - physiology ; Neural Prostheses ; Neuronal Plasticity - physiology ; Neurons ; Photic Stimulation - methods ; Primates ; Psychomotor Performance - physiology ; Random Allocation ; Scholarships & fellowships ; Teach-Back Communication - methods ; User-Computer Interface</subject><ispartof>Neuron (Cambridge, Mass.), 2014-06, Vol.82 (6), p.1380-1393</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</citedby><cites>FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2014.04.048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24945777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orsborn, Amy L.</creatorcontrib><creatorcontrib>Moorman, Helene G.</creatorcontrib><creatorcontrib>Overduin, Simon A.</creatorcontrib><creatorcontrib>Shanechi, Maryam M.</creatorcontrib><creatorcontrib>Dimitrov, Dragan F.</creatorcontrib><creatorcontrib>Carmena, Jose M.</creatorcontrib><title>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses.
•Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks
Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biofeedback</subject><subject>Brain research</subject><subject>Feasibility Studies</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Motor Cortex - physiology</subject><subject>Motor Skills - physiology</subject><subject>Neural Prostheses</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Photic Stimulation - methods</subject><subject>Primates</subject><subject>Psychomotor Performance - physiology</subject><subject>Random Allocation</subject><subject>Scholarships & fellowships</subject><subject>Teach-Back Communication - methods</subject><subject>User-Computer Interface</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7uzqPxBp8OKlx6Q7nxdhmdVVGFRYvQkhnVSzGTOdNkkL--9NO6sHDyIU1KGeeuvjRegZwVuCCX912E6wpDhtO0zoFq8hH6ANwUq0lCj1EG2wVLzlnejP0HnOB1xBpshjdNZRRZkQYoO-7kLM4Np9jHNzBTY6SM2lM3Mxxcepubk1M-TmQx1lQvMpmFy89eWuGWNqbr75EMYl_CrHOcVcbqHWm12cSorhCXo0mpDh6X2-QF_evvm8e9fuP16_313uW8t6Vlo5dIYPgzIEQKmBKDewwckRk2HElHecMykkkxSUHaUagQtuO0eACewENv0FennSrSt8XyAXffTZQghmgrhkTRhjmAhF6X-gvaKikxhX9MVf6CEuaaqHrJToq56SlaInytbzc4JRz8kfTbrTBOvVKH3QJ6P0apTGa6xtz-_Fl-EI7k_Tb2cq8PoEQH3cDw9JZ-thsuB8Alu0i_7fE34CP7amMA</recordid><startdate>20140618</startdate><enddate>20140618</enddate><creator>Orsborn, Amy L.</creator><creator>Moorman, Helene G.</creator><creator>Overduin, Simon A.</creator><creator>Shanechi, Maryam M.</creator><creator>Dimitrov, Dragan F.</creator><creator>Carmena, Jose M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140618</creationdate><title>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</title><author>Orsborn, Amy L. ; Moorman, Helene G. ; Overduin, Simon A. ; Shanechi, Maryam M. ; Dimitrov, Dragan F. ; Carmena, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biofeedback</topic><topic>Brain research</topic><topic>Feasibility Studies</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Motor Cortex - physiology</topic><topic>Motor Skills - physiology</topic><topic>Neural Prostheses</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Photic Stimulation - methods</topic><topic>Primates</topic><topic>Psychomotor Performance - physiology</topic><topic>Random Allocation</topic><topic>Scholarships & fellowships</topic><topic>Teach-Back Communication - methods</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsborn, Amy L.</creatorcontrib><creatorcontrib>Moorman, Helene G.</creatorcontrib><creatorcontrib>Overduin, Simon A.</creatorcontrib><creatorcontrib>Shanechi, Maryam M.</creatorcontrib><creatorcontrib>Dimitrov, Dragan F.</creatorcontrib><creatorcontrib>Carmena, Jose M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orsborn, Amy L.</au><au>Moorman, Helene G.</au><au>Overduin, Simon A.</au><au>Shanechi, Maryam M.</au><au>Dimitrov, Dragan F.</au><au>Carmena, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-06-18</date><risdate>2014</risdate><volume>82</volume><issue>6</issue><spage>1380</spage><epage>1393</epage><pages>1380-1393</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses.
•Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks
Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24945777</pmid><doi>10.1016/j.neuron.2014.04.048</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2014-06, Vol.82 (6), p.1380-1393 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1555017944 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Adaptation, Physiological - physiology Animals Behavior Biofeedback Brain research Feasibility Studies Macaca mulatta Male Motor Cortex - physiology Motor Skills - physiology Neural Prostheses Neuronal Plasticity - physiology Neurons Photic Stimulation - methods Primates Psychomotor Performance - physiology Random Allocation Scholarships & fellowships Teach-Back Communication - methods User-Computer Interface |
title | Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Loop%20Decoder%20Adaptation%20Shapes%20Neural%20Plasticity%20for%20Skillful%20Neuroprosthetic%20Control&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Orsborn,%20Amy%C2%A0L.&rft.date=2014-06-18&rft.volume=82&rft.issue=6&rft.spage=1380&rft.epage=1393&rft.pages=1380-1393&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.04.048&rft_dat=%3Cproquest_cross%3E3339472051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1537379498&rft_id=info:pmid/24945777&rft_els_id=S0896627314003638&rfr_iscdi=true |