Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control

Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2014-06, Vol.82 (6), p.1380-1393
Hauptverfasser: Orsborn, Amy L., Moorman, Helene G., Overduin, Simon A., Shanechi, Maryam M., Dimitrov, Dragan F., Carmena, Jose M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 6
container_start_page 1380
container_title Neuron (Cambridge, Mass.)
container_volume 82
creator Orsborn, Amy L.
Moorman, Helene G.
Overduin, Simon A.
Shanechi, Maryam M.
Dimitrov, Dragan F.
Carmena, Jose M.
description Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses. •Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.
doi_str_mv 10.1016/j.neuron.2014.04.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555017944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314003638</els_id><sourcerecordid>3339472051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7uzqPxBp8OKlx6Q7nxdhmdVVGFRYvQkhnVSzGTOdNkkL--9NO6sHDyIU1KGeeuvjRegZwVuCCX912E6wpDhtO0zoFq8hH6ANwUq0lCj1EG2wVLzlnejP0HnOB1xBpshjdNZRRZkQYoO-7kLM4Np9jHNzBTY6SM2lM3Mxxcepubk1M-TmQx1lQvMpmFy89eWuGWNqbr75EMYl_CrHOcVcbqHWm12cSorhCXo0mpDh6X2-QF_evvm8e9fuP16_313uW8t6Vlo5dIYPgzIEQKmBKDewwckRk2HElHecMykkkxSUHaUagQtuO0eACewENv0FennSrSt8XyAXffTZQghmgrhkTRhjmAhF6X-gvaKikxhX9MVf6CEuaaqHrJToq56SlaInytbzc4JRz8kfTbrTBOvVKH3QJ6P0apTGa6xtz-_Fl-EI7k_Tb2cq8PoEQH3cDw9JZ-thsuB8Alu0i_7fE34CP7amMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537379498</pqid></control><display><type>article</type><title>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Orsborn, Amy L. ; Moorman, Helene G. ; Overduin, Simon A. ; Shanechi, Maryam M. ; Dimitrov, Dragan F. ; Carmena, Jose M.</creator><creatorcontrib>Orsborn, Amy L. ; Moorman, Helene G. ; Overduin, Simon A. ; Shanechi, Maryam M. ; Dimitrov, Dragan F. ; Carmena, Jose M.</creatorcontrib><description>Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses. •Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.04.048</identifier><identifier>PMID: 24945777</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Behavior ; Biofeedback ; Brain research ; Feasibility Studies ; Macaca mulatta ; Male ; Motor Cortex - physiology ; Motor Skills - physiology ; Neural Prostheses ; Neuronal Plasticity - physiology ; Neurons ; Photic Stimulation - methods ; Primates ; Psychomotor Performance - physiology ; Random Allocation ; Scholarships &amp; fellowships ; Teach-Back Communication - methods ; User-Computer Interface</subject><ispartof>Neuron (Cambridge, Mass.), 2014-06, Vol.82 (6), p.1380-1393</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</citedby><cites>FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2014.04.048$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24945777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orsborn, Amy L.</creatorcontrib><creatorcontrib>Moorman, Helene G.</creatorcontrib><creatorcontrib>Overduin, Simon A.</creatorcontrib><creatorcontrib>Shanechi, Maryam M.</creatorcontrib><creatorcontrib>Dimitrov, Dragan F.</creatorcontrib><creatorcontrib>Carmena, Jose M.</creatorcontrib><title>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses. •Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biofeedback</subject><subject>Brain research</subject><subject>Feasibility Studies</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Motor Cortex - physiology</subject><subject>Motor Skills - physiology</subject><subject>Neural Prostheses</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Photic Stimulation - methods</subject><subject>Primates</subject><subject>Psychomotor Performance - physiology</subject><subject>Random Allocation</subject><subject>Scholarships &amp; fellowships</subject><subject>Teach-Back Communication - methods</subject><subject>User-Computer Interface</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7uzqPxBp8OKlx6Q7nxdhmdVVGFRYvQkhnVSzGTOdNkkL--9NO6sHDyIU1KGeeuvjRegZwVuCCX912E6wpDhtO0zoFq8hH6ANwUq0lCj1EG2wVLzlnejP0HnOB1xBpshjdNZRRZkQYoO-7kLM4Np9jHNzBTY6SM2lM3Mxxcepubk1M-TmQx1lQvMpmFy89eWuGWNqbr75EMYl_CrHOcVcbqHWm12cSorhCXo0mpDh6X2-QF_evvm8e9fuP16_313uW8t6Vlo5dIYPgzIEQKmBKDewwckRk2HElHecMykkkxSUHaUagQtuO0eACewENv0FennSrSt8XyAXffTZQghmgrhkTRhjmAhF6X-gvaKikxhX9MVf6CEuaaqHrJToq56SlaInytbzc4JRz8kfTbrTBOvVKH3QJ6P0apTGa6xtz-_Fl-EI7k_Tb2cq8PoEQH3cDw9JZ-thsuB8Alu0i_7fE34CP7amMA</recordid><startdate>20140618</startdate><enddate>20140618</enddate><creator>Orsborn, Amy L.</creator><creator>Moorman, Helene G.</creator><creator>Overduin, Simon A.</creator><creator>Shanechi, Maryam M.</creator><creator>Dimitrov, Dragan F.</creator><creator>Carmena, Jose M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140618</creationdate><title>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</title><author>Orsborn, Amy L. ; Moorman, Helene G. ; Overduin, Simon A. ; Shanechi, Maryam M. ; Dimitrov, Dragan F. ; Carmena, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-8b2a6bb9a1ee99b19db5bd8f01bf0462665878584e9cf89fe676c2d1e570d70a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biofeedback</topic><topic>Brain research</topic><topic>Feasibility Studies</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Motor Cortex - physiology</topic><topic>Motor Skills - physiology</topic><topic>Neural Prostheses</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Photic Stimulation - methods</topic><topic>Primates</topic><topic>Psychomotor Performance - physiology</topic><topic>Random Allocation</topic><topic>Scholarships &amp; fellowships</topic><topic>Teach-Back Communication - methods</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orsborn, Amy L.</creatorcontrib><creatorcontrib>Moorman, Helene G.</creatorcontrib><creatorcontrib>Overduin, Simon A.</creatorcontrib><creatorcontrib>Shanechi, Maryam M.</creatorcontrib><creatorcontrib>Dimitrov, Dragan F.</creatorcontrib><creatorcontrib>Carmena, Jose M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orsborn, Amy L.</au><au>Moorman, Helene G.</au><au>Overduin, Simon A.</au><au>Shanechi, Maryam M.</au><au>Dimitrov, Dragan F.</au><au>Carmena, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-06-18</date><risdate>2014</risdate><volume>82</volume><issue>6</issue><spage>1380</spage><epage>1393</epage><pages>1380-1393</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses: nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts: with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses. •Combined neural and decoder adaptation can yield skillful neuroprosthetic control•Decoder adaptation shapes neural representations of neuroprosthetic control•Learning yields changes in the timing of neural recruitment•Neuroprosthetic skill formation reduces interference from native motor networks Orsborn et al. demonstrate that neural and decoder adaptation can be combined to achieve and maintain skillful neuroprosthetic control despite changes in neural recordings and control contexts. They show that these adaptation mechanisms interact to shape long-term neuroprosthetic performance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24945777</pmid><doi>10.1016/j.neuron.2014.04.048</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-06, Vol.82 (6), p.1380-1393
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_1555017944
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Adaptation, Physiological - physiology
Animals
Behavior
Biofeedback
Brain research
Feasibility Studies
Macaca mulatta
Male
Motor Cortex - physiology
Motor Skills - physiology
Neural Prostheses
Neuronal Plasticity - physiology
Neurons
Photic Stimulation - methods
Primates
Psychomotor Performance - physiology
Random Allocation
Scholarships & fellowships
Teach-Back Communication - methods
User-Computer Interface
title Closed-Loop Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Loop%20Decoder%20Adaptation%20Shapes%20Neural%20Plasticity%20for%20Skillful%20Neuroprosthetic%20Control&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Orsborn,%20Amy%C2%A0L.&rft.date=2014-06-18&rft.volume=82&rft.issue=6&rft.spage=1380&rft.epage=1393&rft.pages=1380-1393&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.04.048&rft_dat=%3Cproquest_cross%3E3339472051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1537379498&rft_id=info:pmid/24945777&rft_els_id=S0896627314003638&rfr_iscdi=true