Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes

We investigated with remote sensing (APEX images) the coexistence of phytoplankton and macrophytes in three interconnected shallow and hypereutrophic fluvial lakes (Mantua Lakes, Northern Italy). High concentrations of chlorophyll-a, up to 60 mg m⁻³, were determined in the open water between well-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2014-10, Vol.737 (1), p.67-76
Hauptverfasser: Bolpagni, Rossano, Bresciani, Mariano, Laini, Alex, Pinardi, Monica, Matta, Erica, Ampe, Eva M, Giardino, Claudia, Viaroli, Pierluigi, Bartoli, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 67
container_title Hydrobiologia
container_volume 737
creator Bolpagni, Rossano
Bresciani, Mariano
Laini, Alex
Pinardi, Monica
Matta, Erica
Ampe, Eva M
Giardino, Claudia
Viaroli, Pierluigi
Bartoli, Marco
description We investigated with remote sensing (APEX images) the coexistence of phytoplankton and macrophytes in three interconnected shallow and hypereutrophic fluvial lakes (Mantua Lakes, Northern Italy). High concentrations of chlorophyll-a, up to 60 mg m⁻³, were determined in the open water between well-developed stands of floating-leaved, submerged, and emergent macrophytes. Our data suggest a general inhibition of phytoplankton by macrophytes, evidenced by decreasing chlorophyll-a concentrations in proximity of macrophyte stands. Chlorophyll-a concentrations halved in the proximity of emergent stands (~6 mg m⁻³ within 21 m from the stand border) when compared to the outer zones (~13 mg m⁻³). Contrasting trends were observed for submerged stands, where concentrations decreased inwards from ~8 to ~3 mg m⁻³. Floating leaved stands had a neutral effect, chlorophyll-a being nearly constant in both inner and outer zones. Overall, remotely-sensed data allow evaluation of quantitative and spatially defined interactions of macrophytes and phytoplankton at the whole ecosystem scale.
doi_str_mv 10.1007/s10750-013-1800-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555014030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A377997948</galeid><sourcerecordid>A377997948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-e442e20b14ef7c10d3d4f56568e767bd639887bacacb458118d1720b0d2e67d83</originalsourceid><addsrcrecordid>eNp9kc1u1TAQRiMEEpfCA7AiEhtYpMwkduwsq4qfSpWQWrrF8nUmuW4TO9gJ9L49jtJFy4KVpdE59uf5suwtwikCiE8RQXAoAKsCJUBRP8t2yEVVcETxPNsBoCwkcvkyexXjLSSnKWGX_byi0c-UR3LRuj73XT4djrOfBu3uZu-KUZvg1xHlxtO9jTM5Q7l1eTzoYfB_8sNxokDLvGLW5N2w_LZ6yAd9R_F19qLTQ6Q3D-dJdvPl84_zb8Xl968X52eXheFYzwUxVlIJe2TUCYPQVi3reM1rSaIW-7auGinFXhtt9oxLRNmiSDy0JdWildVJ9mG7dwr-10JxVqONhob0C_JLVMg5B2RQQULf_4Pe-iW4lC5RjFWJApao043q9UDKus7PYX1etzRa4x11Ns3PKiGaRjRsTfDxiZCYme7nXi8xqovrq6csbmxabYyBOjUFO-pwVAhqrVNtdapUp1rrVHVyys2JiXU9hUex_yO926ROe6X7YKO6uS7XRSRIMoHVX3P_qzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1544314004</pqid></control><display><type>article</type><title>Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bolpagni, Rossano ; Bresciani, Mariano ; Laini, Alex ; Pinardi, Monica ; Matta, Erica ; Ampe, Eva M ; Giardino, Claudia ; Viaroli, Pierluigi ; Bartoli, Marco</creator><creatorcontrib>Bolpagni, Rossano ; Bresciani, Mariano ; Laini, Alex ; Pinardi, Monica ; Matta, Erica ; Ampe, Eva M ; Giardino, Claudia ; Viaroli, Pierluigi ; Bartoli, Marco</creatorcontrib><description>We investigated with remote sensing (APEX images) the coexistence of phytoplankton and macrophytes in three interconnected shallow and hypereutrophic fluvial lakes (Mantua Lakes, Northern Italy). High concentrations of chlorophyll-a, up to 60 mg m⁻³, were determined in the open water between well-developed stands of floating-leaved, submerged, and emergent macrophytes. Our data suggest a general inhibition of phytoplankton by macrophytes, evidenced by decreasing chlorophyll-a concentrations in proximity of macrophyte stands. Chlorophyll-a concentrations halved in the proximity of emergent stands (~6 mg m⁻³ within 21 m from the stand border) when compared to the outer zones (~13 mg m⁻³). Contrasting trends were observed for submerged stands, where concentrations decreased inwards from ~8 to ~3 mg m⁻³. Floating leaved stands had a neutral effect, chlorophyll-a being nearly constant in both inner and outer zones. Overall, remotely-sensed data allow evaluation of quantitative and spatially defined interactions of macrophytes and phytoplankton at the whole ecosystem scale.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-013-1800-6</identifier><language>eng</language><publisher>Cham: Springer-Verlag</publisher><subject>Aquatic plants ; Biomedical and Life Sciences ; Chlorophyll ; Ecology ; ecosystems ; Eutrophication ; Freshwater ; Freshwater &amp; Marine Ecology ; Geomorphology ; Lakes ; Life Sciences ; macrophytes ; Phytoplankton ; Plankton ; Plants in Hydrosystems ; Remote sensing ; Zoology</subject><ispartof>Hydrobiologia, 2014-10, Vol.737 (1), p.67-76</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer International Publishing Switzerland 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-e442e20b14ef7c10d3d4f56568e767bd639887bacacb458118d1720b0d2e67d83</citedby><cites>FETCH-LOGICAL-c516t-e442e20b14ef7c10d3d4f56568e767bd639887bacacb458118d1720b0d2e67d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-013-1800-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-013-1800-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bolpagni, Rossano</creatorcontrib><creatorcontrib>Bresciani, Mariano</creatorcontrib><creatorcontrib>Laini, Alex</creatorcontrib><creatorcontrib>Pinardi, Monica</creatorcontrib><creatorcontrib>Matta, Erica</creatorcontrib><creatorcontrib>Ampe, Eva M</creatorcontrib><creatorcontrib>Giardino, Claudia</creatorcontrib><creatorcontrib>Viaroli, Pierluigi</creatorcontrib><creatorcontrib>Bartoli, Marco</creatorcontrib><title>Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>We investigated with remote sensing (APEX images) the coexistence of phytoplankton and macrophytes in three interconnected shallow and hypereutrophic fluvial lakes (Mantua Lakes, Northern Italy). High concentrations of chlorophyll-a, up to 60 mg m⁻³, were determined in the open water between well-developed stands of floating-leaved, submerged, and emergent macrophytes. Our data suggest a general inhibition of phytoplankton by macrophytes, evidenced by decreasing chlorophyll-a concentrations in proximity of macrophyte stands. Chlorophyll-a concentrations halved in the proximity of emergent stands (~6 mg m⁻³ within 21 m from the stand border) when compared to the outer zones (~13 mg m⁻³). Contrasting trends were observed for submerged stands, where concentrations decreased inwards from ~8 to ~3 mg m⁻³. Floating leaved stands had a neutral effect, chlorophyll-a being nearly constant in both inner and outer zones. Overall, remotely-sensed data allow evaluation of quantitative and spatially defined interactions of macrophytes and phytoplankton at the whole ecosystem scale.</description><subject>Aquatic plants</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophyll</subject><subject>Ecology</subject><subject>ecosystems</subject><subject>Eutrophication</subject><subject>Freshwater</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Geomorphology</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>macrophytes</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Plants in Hydrosystems</subject><subject>Remote sensing</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQRiMEEpfCA7AiEhtYpMwkduwsq4qfSpWQWrrF8nUmuW4TO9gJ9L49jtJFy4KVpdE59uf5suwtwikCiE8RQXAoAKsCJUBRP8t2yEVVcETxPNsBoCwkcvkyexXjLSSnKWGX_byi0c-UR3LRuj73XT4djrOfBu3uZu-KUZvg1xHlxtO9jTM5Q7l1eTzoYfB_8sNxokDLvGLW5N2w_LZ6yAd9R_F19qLTQ6Q3D-dJdvPl84_zb8Xl968X52eXheFYzwUxVlIJe2TUCYPQVi3reM1rSaIW-7auGinFXhtt9oxLRNmiSDy0JdWildVJ9mG7dwr-10JxVqONhob0C_JLVMg5B2RQQULf_4Pe-iW4lC5RjFWJApao043q9UDKus7PYX1etzRa4x11Ns3PKiGaRjRsTfDxiZCYme7nXi8xqovrq6csbmxabYyBOjUFO-pwVAhqrVNtdapUp1rrVHVyys2JiXU9hUex_yO926ROe6X7YKO6uS7XRSRIMoHVX3P_qzE</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Bolpagni, Rossano</creator><creator>Bresciani, Mariano</creator><creator>Laini, Alex</creator><creator>Pinardi, Monica</creator><creator>Matta, Erica</creator><creator>Ampe, Eva M</creator><creator>Giardino, Claudia</creator><creator>Viaroli, Pierluigi</creator><creator>Bartoli, Marco</creator><general>Springer-Verlag</general><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20141001</creationdate><title>Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes</title><author>Bolpagni, Rossano ; Bresciani, Mariano ; Laini, Alex ; Pinardi, Monica ; Matta, Erica ; Ampe, Eva M ; Giardino, Claudia ; Viaroli, Pierluigi ; Bartoli, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-e442e20b14ef7c10d3d4f56568e767bd639887bacacb458118d1720b0d2e67d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aquatic plants</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophyll</topic><topic>Ecology</topic><topic>ecosystems</topic><topic>Eutrophication</topic><topic>Freshwater</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Geomorphology</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>macrophytes</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Plants in Hydrosystems</topic><topic>Remote sensing</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolpagni, Rossano</creatorcontrib><creatorcontrib>Bresciani, Mariano</creatorcontrib><creatorcontrib>Laini, Alex</creatorcontrib><creatorcontrib>Pinardi, Monica</creatorcontrib><creatorcontrib>Matta, Erica</creatorcontrib><creatorcontrib>Ampe, Eva M</creatorcontrib><creatorcontrib>Giardino, Claudia</creatorcontrib><creatorcontrib>Viaroli, Pierluigi</creatorcontrib><creatorcontrib>Bartoli, Marco</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolpagni, Rossano</au><au>Bresciani, Mariano</au><au>Laini, Alex</au><au>Pinardi, Monica</au><au>Matta, Erica</au><au>Ampe, Eva M</au><au>Giardino, Claudia</au><au>Viaroli, Pierluigi</au><au>Bartoli, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>737</volume><issue>1</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>We investigated with remote sensing (APEX images) the coexistence of phytoplankton and macrophytes in three interconnected shallow and hypereutrophic fluvial lakes (Mantua Lakes, Northern Italy). High concentrations of chlorophyll-a, up to 60 mg m⁻³, were determined in the open water between well-developed stands of floating-leaved, submerged, and emergent macrophytes. Our data suggest a general inhibition of phytoplankton by macrophytes, evidenced by decreasing chlorophyll-a concentrations in proximity of macrophyte stands. Chlorophyll-a concentrations halved in the proximity of emergent stands (~6 mg m⁻³ within 21 m from the stand border) when compared to the outer zones (~13 mg m⁻³). Contrasting trends were observed for submerged stands, where concentrations decreased inwards from ~8 to ~3 mg m⁻³. Floating leaved stands had a neutral effect, chlorophyll-a being nearly constant in both inner and outer zones. Overall, remotely-sensed data allow evaluation of quantitative and spatially defined interactions of macrophytes and phytoplankton at the whole ecosystem scale.</abstract><cop>Cham</cop><pub>Springer-Verlag</pub><doi>10.1007/s10750-013-1800-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2014-10, Vol.737 (1), p.67-76
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_miscellaneous_1555014030
source SpringerLink Journals - AutoHoldings
subjects Aquatic plants
Biomedical and Life Sciences
Chlorophyll
Ecology
ecosystems
Eutrophication
Freshwater
Freshwater & Marine Ecology
Geomorphology
Lakes
Life Sciences
macrophytes
Phytoplankton
Plankton
Plants in Hydrosystems
Remote sensing
Zoology
title Remote sensing of phytoplankton-macrophyte coexistence in shallow hypereutrophic fluvial lakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20sensing%20of%20phytoplankton-macrophyte%20coexistence%20in%20shallow%20hypereutrophic%20fluvial%20lakes&rft.jtitle=Hydrobiologia&rft.au=Bolpagni,%20Rossano&rft.date=2014-10-01&rft.volume=737&rft.issue=1&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-013-1800-6&rft_dat=%3Cgale_proqu%3EA377997948%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1544314004&rft_id=info:pmid/&rft_galeid=A377997948&rfr_iscdi=true