limit of the genetic adaptation to copper in freshwater phytoplankton
Copper is one of the most frequently used algaecides to control blooms of toxic cyanobacteria in water supply reservoirs. Among the negative impacts derived from the use of this substance is the increasing resistance of cyanobacteria to copper toxicity, as well as changes in the community structure...
Gespeichert in:
Veröffentlicht in: | Oecologia 2014-08, Vol.175 (4), p.1179-1188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1188 |
---|---|
container_issue | 4 |
container_start_page | 1179 |
container_title | Oecologia |
container_volume | 175 |
creator | Rouco, Mónica López-Rodas, Victoria González, Raquel Emma Huertas, I García-Sánchez, María J Flores-Moya, Antonio Costas, Eduardo |
description | Copper is one of the most frequently used algaecides to control blooms of toxic cyanobacteria in water supply reservoirs. Among the negative impacts derived from the use of this substance is the increasing resistance of cyanobacteria to copper toxicity, as well as changes in the community structure of native phytoplankton. Here, we used the ratchet protocol to investigate the differential evolution and maximum adaptation capacity of selected freshwater phytoplankton species to the exposure of increasing doses of copper. Initially, a dose of 2.5 μM CuSO₄·5H₂O was able to completely inhibit growth in three strains of the toxic cyanobacterium Microcystis aeruginosa, whereas growth of the chlorophyceans Dictyosphaerium chlorelloides and Desmodesmus intermedius (represented by two different strains) was completely abolished at 12 μM. A significant increase in resistance was achieved in all derived populations during the ratchet experiment. All the chlorophyceans were able to adapt to up to 270 μM of copper sulfate, but 10 μM was the highest concentration that M. aeruginosa strains were able to cope with, although one of the replicates adapted to 30 μM. The recurrent use and increasing doses of copper in water reservoirs could lead to the selection of copper-resistant mutants of both chlorophyceans and cyanobacteria. However, under high concentrations of copper, the composition of phytoplankton community could undergo a drastic change with cyanobacteria being replaced by copper-resistant chlorophyceans. This result stems from a distinct evolutionary potential of these species to adapt to this substance. |
doi_str_mv | 10.1007/s00442-014-2963-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555013032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A379570160</galeid><jstor_id>24037099</jstor_id><sourcerecordid>A379570160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c681t-d3181f3395e32cc3efea0b29d89ecc107b599e767d22bb412cf7b9c86a360e243</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoModlv9AV6oAyLoxdR8zWRyWUrVQkGw9jpkMiezWWcmY5JF---bZVbbFZFchOQ87_nIG4ReEHxKMBYfIsac0xITXlJZs5I8QivCGS2JZPIxWmFMZdlUXB6h4xg3OIOkqp6iI8obJrHkK3QxuNGlwtsiraHoYYLkTKE7PSednJ-K5Avj5xlC4abCBojrnzrl07y-TX4e9PQ9-ekZemL1EOH5fj9BNx8vvp1_Lq--fLo8P7sqTd2QVHaMNMQyJitg1BgGFjRuqewaCcYQLNpKShC16ChtW06osaKVpqk1qzFQzk7QuyXvHPyPLcSkRhcNDLkN8Nuo8nQVJgwzmtE3f6Ebvw1T7i5TvBI1r5vmnur1AMpN1qegzS6pOmNCVgKTGmfq9B9UXh2MzvgJrMv3B4L3B4LMJPiVer2NUV1efz1kycKa4GMMYNUc3KjDrSJY7WxWi80qu6d2NiuSNa_2w23bEbo_it--ZuDtHtDR6MEGPRkX77mmJlyK3fx04WIOTT2EB6_0n-ovF9EmJh8eFMdMYClz_PUSt9or3Ydc-Oaa5gT5AzIucnt3YSDObA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545764688</pqid></control><display><type>article</type><title>limit of the genetic adaptation to copper in freshwater phytoplankton</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Rouco, Mónica ; López-Rodas, Victoria ; González, Raquel ; Emma Huertas, I ; García-Sánchez, María J ; Flores-Moya, Antonio ; Costas, Eduardo</creator><creatorcontrib>Rouco, Mónica ; López-Rodas, Victoria ; González, Raquel ; Emma Huertas, I ; García-Sánchez, María J ; Flores-Moya, Antonio ; Costas, Eduardo</creatorcontrib><description>Copper is one of the most frequently used algaecides to control blooms of toxic cyanobacteria in water supply reservoirs. Among the negative impacts derived from the use of this substance is the increasing resistance of cyanobacteria to copper toxicity, as well as changes in the community structure of native phytoplankton. Here, we used the ratchet protocol to investigate the differential evolution and maximum adaptation capacity of selected freshwater phytoplankton species to the exposure of increasing doses of copper. Initially, a dose of 2.5 μM CuSO₄·5H₂O was able to completely inhibit growth in three strains of the toxic cyanobacterium Microcystis aeruginosa, whereas growth of the chlorophyceans Dictyosphaerium chlorelloides and Desmodesmus intermedius (represented by two different strains) was completely abolished at 12 μM. A significant increase in resistance was achieved in all derived populations during the ratchet experiment. All the chlorophyceans were able to adapt to up to 270 μM of copper sulfate, but 10 μM was the highest concentration that M. aeruginosa strains were able to cope with, although one of the replicates adapted to 30 μM. The recurrent use and increasing doses of copper in water reservoirs could lead to the selection of copper-resistant mutants of both chlorophyceans and cyanobacteria. However, under high concentrations of copper, the composition of phytoplankton community could undergo a drastic change with cyanobacteria being replaced by copper-resistant chlorophyceans. This result stems from a distinct evolutionary potential of these species to adapt to this substance.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-014-2963-1</identifier><identifier>PMID: 24839094</identifier><identifier>CODEN: OECOBX</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acclimatization ; Adaptation, Physiological ; Algicides ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biomedical and Life Sciences ; Cell growth ; Chlorophyta ; Community structure ; Copper ; Copper - metabolism ; copper sulfate ; Cultured cells ; Cyanobacteria ; Cyanobacteria - genetics ; Desmodesmus ; Dictyosphaerium ; Dictyosphaerium chlorelloides ; Dosage ; Ecology ; Fresh Water ; Fresh water ecosystems ; freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genetic adaptation ; Genetic research ; Hydrology/Water Resources ; Life Sciences ; Microcystis - genetics ; Microcystis aeruginosa ; mutants ; Phytoplankton ; Phytoplankton - genetics ; Phytoplankton - metabolism ; Plant Sciences ; POPULATION ECOLOGY ; Population ecology - Original research ; Reservoirs ; Sulfates ; Synecology ; Toxicity ; Water Pollutants, Chemical - metabolism ; water reservoirs ; Water supply</subject><ispartof>Oecologia, 2014-08, Vol.175 (4), p.1179-1188</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c681t-d3181f3395e32cc3efea0b29d89ecc107b599e767d22bb412cf7b9c86a360e243</citedby><cites>FETCH-LOGICAL-c681t-d3181f3395e32cc3efea0b29d89ecc107b599e767d22bb412cf7b9c86a360e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24037099$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24037099$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28614978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24839094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouco, Mónica</creatorcontrib><creatorcontrib>López-Rodas, Victoria</creatorcontrib><creatorcontrib>González, Raquel</creatorcontrib><creatorcontrib>Emma Huertas, I</creatorcontrib><creatorcontrib>García-Sánchez, María J</creatorcontrib><creatorcontrib>Flores-Moya, Antonio</creatorcontrib><creatorcontrib>Costas, Eduardo</creatorcontrib><title>limit of the genetic adaptation to copper in freshwater phytoplankton</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>Copper is one of the most frequently used algaecides to control blooms of toxic cyanobacteria in water supply reservoirs. Among the negative impacts derived from the use of this substance is the increasing resistance of cyanobacteria to copper toxicity, as well as changes in the community structure of native phytoplankton. Here, we used the ratchet protocol to investigate the differential evolution and maximum adaptation capacity of selected freshwater phytoplankton species to the exposure of increasing doses of copper. Initially, a dose of 2.5 μM CuSO₄·5H₂O was able to completely inhibit growth in three strains of the toxic cyanobacterium Microcystis aeruginosa, whereas growth of the chlorophyceans Dictyosphaerium chlorelloides and Desmodesmus intermedius (represented by two different strains) was completely abolished at 12 μM. A significant increase in resistance was achieved in all derived populations during the ratchet experiment. All the chlorophyceans were able to adapt to up to 270 μM of copper sulfate, but 10 μM was the highest concentration that M. aeruginosa strains were able to cope with, although one of the replicates adapted to 30 μM. The recurrent use and increasing doses of copper in water reservoirs could lead to the selection of copper-resistant mutants of both chlorophyceans and cyanobacteria. However, under high concentrations of copper, the composition of phytoplankton community could undergo a drastic change with cyanobacteria being replaced by copper-resistant chlorophyceans. This result stems from a distinct evolutionary potential of these species to adapt to this substance.</description><subject>Acclimatization</subject><subject>Adaptation, Physiological</subject><subject>Algicides</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cell growth</subject><subject>Chlorophyta</subject><subject>Community structure</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>copper sulfate</subject><subject>Cultured cells</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Desmodesmus</subject><subject>Dictyosphaerium</subject><subject>Dictyosphaerium chlorelloides</subject><subject>Dosage</subject><subject>Ecology</subject><subject>Fresh Water</subject><subject>Fresh water ecosystems</subject><subject>freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genetic adaptation</subject><subject>Genetic research</subject><subject>Hydrology/Water Resources</subject><subject>Life Sciences</subject><subject>Microcystis - genetics</subject><subject>Microcystis aeruginosa</subject><subject>mutants</subject><subject>Phytoplankton</subject><subject>Phytoplankton - genetics</subject><subject>Phytoplankton - metabolism</subject><subject>Plant Sciences</subject><subject>POPULATION ECOLOGY</subject><subject>Population ecology - Original research</subject><subject>Reservoirs</subject><subject>Sulfates</subject><subject>Synecology</subject><subject>Toxicity</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>water reservoirs</subject><subject>Water supply</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kl1rFDEUhoModlv9AV6oAyLoxdR8zWRyWUrVQkGw9jpkMiezWWcmY5JF---bZVbbFZFchOQ87_nIG4ReEHxKMBYfIsac0xITXlJZs5I8QivCGS2JZPIxWmFMZdlUXB6h4xg3OIOkqp6iI8obJrHkK3QxuNGlwtsiraHoYYLkTKE7PSednJ-K5Avj5xlC4abCBojrnzrl07y-TX4e9PQ9-ekZemL1EOH5fj9BNx8vvp1_Lq--fLo8P7sqTd2QVHaMNMQyJitg1BgGFjRuqewaCcYQLNpKShC16ChtW06osaKVpqk1qzFQzk7QuyXvHPyPLcSkRhcNDLkN8Nuo8nQVJgwzmtE3f6Ebvw1T7i5TvBI1r5vmnur1AMpN1qegzS6pOmNCVgKTGmfq9B9UXh2MzvgJrMv3B4L3B4LMJPiVer2NUV1efz1kycKa4GMMYNUc3KjDrSJY7WxWi80qu6d2NiuSNa_2w23bEbo_it--ZuDtHtDR6MEGPRkX77mmJlyK3fx04WIOTT2EB6_0n-ovF9EmJh8eFMdMYClz_PUSt9or3Ydc-Oaa5gT5AzIucnt3YSDObA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Rouco, Mónica</creator><creator>López-Rodas, Victoria</creator><creator>González, Raquel</creator><creator>Emma Huertas, I</creator><creator>García-Sánchez, María J</creator><creator>Flores-Moya, Antonio</creator><creator>Costas, Eduardo</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7QH</scope><scope>7UA</scope><scope>H97</scope></search><sort><creationdate>20140801</creationdate><title>limit of the genetic adaptation to copper in freshwater phytoplankton</title><author>Rouco, Mónica ; López-Rodas, Victoria ; González, Raquel ; Emma Huertas, I ; García-Sánchez, María J ; Flores-Moya, Antonio ; Costas, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c681t-d3181f3395e32cc3efea0b29d89ecc107b599e767d22bb412cf7b9c86a360e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acclimatization</topic><topic>Adaptation, Physiological</topic><topic>Algicides</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cell growth</topic><topic>Chlorophyta</topic><topic>Community structure</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>copper sulfate</topic><topic>Cultured cells</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Desmodesmus</topic><topic>Dictyosphaerium</topic><topic>Dictyosphaerium chlorelloides</topic><topic>Dosage</topic><topic>Ecology</topic><topic>Fresh Water</topic><topic>Fresh water ecosystems</topic><topic>freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genetic adaptation</topic><topic>Genetic research</topic><topic>Hydrology/Water Resources</topic><topic>Life Sciences</topic><topic>Microcystis - genetics</topic><topic>Microcystis aeruginosa</topic><topic>mutants</topic><topic>Phytoplankton</topic><topic>Phytoplankton - genetics</topic><topic>Phytoplankton - metabolism</topic><topic>Plant Sciences</topic><topic>POPULATION ECOLOGY</topic><topic>Population ecology - Original research</topic><topic>Reservoirs</topic><topic>Sulfates</topic><topic>Synecology</topic><topic>Toxicity</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>water reservoirs</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouco, Mónica</creatorcontrib><creatorcontrib>López-Rodas, Victoria</creatorcontrib><creatorcontrib>González, Raquel</creatorcontrib><creatorcontrib>Emma Huertas, I</creatorcontrib><creatorcontrib>García-Sánchez, María J</creatorcontrib><creatorcontrib>Flores-Moya, Antonio</creatorcontrib><creatorcontrib>Costas, Eduardo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouco, Mónica</au><au>López-Rodas, Victoria</au><au>González, Raquel</au><au>Emma Huertas, I</au><au>García-Sánchez, María J</au><au>Flores-Moya, Antonio</au><au>Costas, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>limit of the genetic adaptation to copper in freshwater phytoplankton</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>175</volume><issue>4</issue><spage>1179</spage><epage>1188</epage><pages>1179-1188</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><coden>OECOBX</coden><abstract>Copper is one of the most frequently used algaecides to control blooms of toxic cyanobacteria in water supply reservoirs. Among the negative impacts derived from the use of this substance is the increasing resistance of cyanobacteria to copper toxicity, as well as changes in the community structure of native phytoplankton. Here, we used the ratchet protocol to investigate the differential evolution and maximum adaptation capacity of selected freshwater phytoplankton species to the exposure of increasing doses of copper. Initially, a dose of 2.5 μM CuSO₄·5H₂O was able to completely inhibit growth in three strains of the toxic cyanobacterium Microcystis aeruginosa, whereas growth of the chlorophyceans Dictyosphaerium chlorelloides and Desmodesmus intermedius (represented by two different strains) was completely abolished at 12 μM. A significant increase in resistance was achieved in all derived populations during the ratchet experiment. All the chlorophyceans were able to adapt to up to 270 μM of copper sulfate, but 10 μM was the highest concentration that M. aeruginosa strains were able to cope with, although one of the replicates adapted to 30 μM. The recurrent use and increasing doses of copper in water reservoirs could lead to the selection of copper-resistant mutants of both chlorophyceans and cyanobacteria. However, under high concentrations of copper, the composition of phytoplankton community could undergo a drastic change with cyanobacteria being replaced by copper-resistant chlorophyceans. This result stems from a distinct evolutionary potential of these species to adapt to this substance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24839094</pmid><doi>10.1007/s00442-014-2963-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2014-08, Vol.175 (4), p.1179-1188 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_1555013032 |
source | Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acclimatization Adaptation, Physiological Algicides Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Biomedical and Life Sciences Cell growth Chlorophyta Community structure Copper Copper - metabolism copper sulfate Cultured cells Cyanobacteria Cyanobacteria - genetics Desmodesmus Dictyosphaerium Dictyosphaerium chlorelloides Dosage Ecology Fresh Water Fresh water ecosystems freshwater Fundamental and applied biological sciences. Psychology General aspects Genetic adaptation Genetic research Hydrology/Water Resources Life Sciences Microcystis - genetics Microcystis aeruginosa mutants Phytoplankton Phytoplankton - genetics Phytoplankton - metabolism Plant Sciences POPULATION ECOLOGY Population ecology - Original research Reservoirs Sulfates Synecology Toxicity Water Pollutants, Chemical - metabolism water reservoirs Water supply |
title | limit of the genetic adaptation to copper in freshwater phytoplankton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=limit%20of%20the%20genetic%20adaptation%20to%20copper%20in%20freshwater%20phytoplankton&rft.jtitle=Oecologia&rft.au=Rouco,%20M%C3%B3nica&rft.date=2014-08-01&rft.volume=175&rft.issue=4&rft.spage=1179&rft.epage=1188&rft.pages=1179-1188&rft.issn=0029-8549&rft.eissn=1432-1939&rft.coden=OECOBX&rft_id=info:doi/10.1007/s00442-014-2963-1&rft_dat=%3Cgale_proqu%3EA379570160%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545764688&rft_id=info:pmid/24839094&rft_galeid=A379570160&rft_jstor_id=24037099&rfr_iscdi=true |