Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level
Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2014-07, Vol.173 (6), p.1564-1578 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1578 |
---|---|
container_issue | 6 |
container_start_page | 1564 |
container_title | Applied biochemistry and biotechnology |
container_volume | 173 |
creator | Zhu, Zebing Wu, Chenguang Zhong, Dan Yuan, Yixing Shan, Lili Zhang, Jie |
description | Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation. |
doi_str_mv | 10.1007/s12010-014-0935-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1555012794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543282788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-ed3c3546738b773ebbbb100c84fd09e97d334829ca02fdff29fba876bb3379fc3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhA3CBSBUSF4P_JGv7CKuWVloEEuzZcpzx1lUSL3a2Kt-eWWUpFQeEL7bs33uemUfIS87eccbU-8IF44wyXlNmZEPvHpEFbxpDmTD8MVkwoSQVQpsT8qyUG8a40I16Sk5ErfGk2YLAeQjgp1KlUH2NO6g-uwlydD3ejNXquk85jkAzlFgmN07Vx5hC7IfqIuXBTRGhzdhBrtZp3FKUDtVl3F7fK6s13EL_nDwJaAkvjvsp2Vycf19d0vWXT1erD2vqG2EmCp30sqmXSupWKQktLmzU6zp0zIBRnZRYufGOidCFIExonVbLtpVSmeDlKXk7--5y-rGHMtkhFg9970ZI-2JxOA0OQZn6P9BaCi2U1oie_YXepH0esZEDhQiXZokUnymfUykZgt3lOLj803JmD3HZOS6LcdlDXPYONa-Ozvt2gO5e8TsfBN4cAVe860N2o4_lD6eXSvFGISdmruDTuIX8oMR__P56FgWXrNtmNN58Q6hhuGrFuPwFToO1bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542781396</pqid></control><display><type>article</type><title>Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Zhu, Zebing ; Wu, Chenguang ; Zhong, Dan ; Yuan, Yixing ; Shan, Lili ; Zhang, Jie</creator><creatorcontrib>Zhu, Zebing ; Wu, Chenguang ; Zhong, Dan ; Yuan, Yixing ; Shan, Lili ; Zhang, Jie</creatorcontrib><description>Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-014-0935-x</identifier><identifier>PMID: 24828580</identifier><identifier>CODEN: ABIBDL</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Bacillus ; Bacillus (bacteria) ; Bacteria ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - pathogenicity ; Bacterial Load ; Biochemistry ; biofilm ; Biofilms ; Biofilms - drug effects ; Biofilms - growth & development ; Biological and medical sciences ; biomass ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chlorine ; Chlorine - pharmacology ; Community structure ; Copper ; denaturing gradient gel electrophoresis ; Disinfectants ; Disinfectants - pharmacology ; Drinking water ; flow cytometry ; Fundamental and applied biological sciences. Psychology ; Harbors ; Humans ; Iron ; Materials Testing ; Moraxella osloensis ; pathogens ; Pipes ; plate count ; Polycarboxylate Cement ; Polyethylene ; Sphingomonas ; Stainless Steel ; Stenotrophomonas ; Water distribution ; Water distribution systems ; Water Microbiology ; Water Purification ; Water Supply</subject><ispartof>Applied biochemistry and biotechnology, 2014-07, Vol.173 (6), p.1564-1578</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-ed3c3546738b773ebbbb100c84fd09e97d334829ca02fdff29fba876bb3379fc3</citedby><cites>FETCH-LOGICAL-c529t-ed3c3546738b773ebbbb100c84fd09e97d334829ca02fdff29fba876bb3379fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-014-0935-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-014-0935-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28677157$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24828580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Zebing</creatorcontrib><creatorcontrib>Wu, Chenguang</creatorcontrib><creatorcontrib>Zhong, Dan</creatorcontrib><creatorcontrib>Yuan, Yixing</creatorcontrib><creatorcontrib>Shan, Lili</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation.</description><subject>Bacillus</subject><subject>Bacillus (bacteria)</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - pathogenicity</subject><subject>Bacterial Load</subject><subject>Biochemistry</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth & development</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chlorine</subject><subject>Chlorine - pharmacology</subject><subject>Community structure</subject><subject>Copper</subject><subject>denaturing gradient gel electrophoresis</subject><subject>Disinfectants</subject><subject>Disinfectants - pharmacology</subject><subject>Drinking water</subject><subject>flow cytometry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Harbors</subject><subject>Humans</subject><subject>Iron</subject><subject>Materials Testing</subject><subject>Moraxella osloensis</subject><subject>pathogens</subject><subject>Pipes</subject><subject>plate count</subject><subject>Polycarboxylate Cement</subject><subject>Polyethylene</subject><subject>Sphingomonas</subject><subject>Stainless Steel</subject><subject>Stenotrophomonas</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water Microbiology</subject><subject>Water Purification</subject><subject>Water Supply</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9v1DAQxS0EokvhA3CBSBUSF4P_JGv7CKuWVloEEuzZcpzx1lUSL3a2Kt-eWWUpFQeEL7bs33uemUfIS87eccbU-8IF44wyXlNmZEPvHpEFbxpDmTD8MVkwoSQVQpsT8qyUG8a40I16Sk5ErfGk2YLAeQjgp1KlUH2NO6g-uwlydD3ejNXquk85jkAzlFgmN07Vx5hC7IfqIuXBTRGhzdhBrtZp3FKUDtVl3F7fK6s13EL_nDwJaAkvjvsp2Vycf19d0vWXT1erD2vqG2EmCp30sqmXSupWKQktLmzU6zp0zIBRnZRYufGOidCFIExonVbLtpVSmeDlKXk7--5y-rGHMtkhFg9970ZI-2JxOA0OQZn6P9BaCi2U1oie_YXepH0esZEDhQiXZokUnymfUykZgt3lOLj803JmD3HZOS6LcdlDXPYONa-Ozvt2gO5e8TsfBN4cAVe860N2o4_lD6eXSvFGISdmruDTuIX8oMR__P56FgWXrNtmNN58Q6hhuGrFuPwFToO1bQ</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Zhu, Zebing</creator><creator>Wu, Chenguang</creator><creator>Zhong, Dan</creator><creator>Yuan, Yixing</creator><creator>Shan, Lili</creator><creator>Zhang, Jie</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140701</creationdate><title>Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level</title><author>Zhu, Zebing ; Wu, Chenguang ; Zhong, Dan ; Yuan, Yixing ; Shan, Lili ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-ed3c3546738b773ebbbb100c84fd09e97d334829ca02fdff29fba876bb3379fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacillus</topic><topic>Bacillus (bacteria)</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - pathogenicity</topic><topic>Bacterial Load</topic><topic>Biochemistry</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth & development</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chlorine</topic><topic>Chlorine - pharmacology</topic><topic>Community structure</topic><topic>Copper</topic><topic>denaturing gradient gel electrophoresis</topic><topic>Disinfectants</topic><topic>Disinfectants - pharmacology</topic><topic>Drinking water</topic><topic>flow cytometry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Harbors</topic><topic>Humans</topic><topic>Iron</topic><topic>Materials Testing</topic><topic>Moraxella osloensis</topic><topic>pathogens</topic><topic>Pipes</topic><topic>plate count</topic><topic>Polycarboxylate Cement</topic><topic>Polyethylene</topic><topic>Sphingomonas</topic><topic>Stainless Steel</topic><topic>Stenotrophomonas</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water Microbiology</topic><topic>Water Purification</topic><topic>Water Supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zebing</creatorcontrib><creatorcontrib>Wu, Chenguang</creatorcontrib><creatorcontrib>Zhong, Dan</creatorcontrib><creatorcontrib>Yuan, Yixing</creatorcontrib><creatorcontrib>Shan, Lili</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zebing</au><au>Wu, Chenguang</au><au>Zhong, Dan</au><au>Yuan, Yixing</au><au>Shan, Lili</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>173</volume><issue>6</issue><spage>1564</spage><epage>1578</epage><pages>1564-1578</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><coden>ABIBDL</coden><abstract>Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><pmid>24828580</pmid><doi>10.1007/s12010-014-0935-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2014-07, Vol.173 (6), p.1564-1578 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1555012794 |
source | MEDLINE; SpringerNature Journals |
subjects | Bacillus Bacillus (bacteria) Bacteria Bacteria - genetics Bacteria - isolation & purification Bacteria - pathogenicity Bacterial Load Biochemistry biofilm Biofilms Biofilms - drug effects Biofilms - growth & development Biological and medical sciences biomass Biotechnology Chemistry Chemistry and Materials Science Chlorine Chlorine - pharmacology Community structure Copper denaturing gradient gel electrophoresis Disinfectants Disinfectants - pharmacology Drinking water flow cytometry Fundamental and applied biological sciences. Psychology Harbors Humans Iron Materials Testing Moraxella osloensis pathogens Pipes plate count Polycarboxylate Cement Polyethylene Sphingomonas Stainless Steel Stenotrophomonas Water distribution Water distribution systems Water Microbiology Water Purification Water Supply |
title | Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Pipe%20Materials%20on%20Chlorine-resistant%20Biofilm%20Formation%20Under%20Long-term%20High%20Chlorine%20Level&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Zhu,%20Zebing&rft.date=2014-07-01&rft.volume=173&rft.issue=6&rft.spage=1564&rft.epage=1578&rft.pages=1564-1578&rft.issn=0273-2289&rft.eissn=1559-0291&rft.coden=ABIBDL&rft_id=info:doi/10.1007/s12010-014-0935-x&rft_dat=%3Cproquest_cross%3E1543282788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1542781396&rft_id=info:pmid/24828580&rfr_iscdi=true |